ubmslateDI-logo-ubm

DI Mobile Menu

Search form

Topics:

Virtual Holography: The Next Step in 3D Imaging?

Virtual Holography: The Next Step in 3D Imaging?

How do radiologists learn to read and interpret medical images?

Medical images, whether produced by CT, MRI, X-ray or ultrasound, are basically 2D slices of 3D objects. But the process of interpreting those images involves mental spatial calculations that often result in the loss of some clinical information, said Sergio Aguirre, founder and chief technology officer of Echopixel technologies.

Consequently, Aguirre is working on a virtual holographic solution that could improve reading accuracy and efficiency by allowing physicians to see and interact with tissue in space as if it were a real physical object.

Spatial Cognition

To understand the potential clinical value of what Aguirre is calling “True 3D,” it’s important to understand the role spatial cognition plays in the evaluation of medical images.

According to Madeleine Keehner, PhD, a research scientist for the Educational Testing Service and director of the Spatial Cognition Laboratory at the University of Dundee in Scotland, spatial cognition is the ability to mentally represent and manipulate spatial information.

She pointed out that because most medical images show a 2D representation of a 3D object, physicians reading that image need to mentally reconstruct the object. “So spatial cognition involves taking that image and constructing a 3D recreation in your mind,” she said, “and there are big individual differences in how well people can do that.”

Consequently, according to Aguirre, reading and interpreting a medical image is a “cognitively intensive process.”

“Doctors have to mentally deliberate as they evaluate images and they’ll have to try to look at different views to get more information and determine if what they see is the tissue they want to evaluate,” Aguirre said. “A lot of clinically significant information gets lost by looking at 2D views of 3D anatomy.” Aguirre wants to provide is a “true 3D visualization platform” that allows a reader to see subjects as 3D objects that he or she can manipulate and interact with.

Virtual Holography

virtual holography

photo credit: Infinite Z Inc.

Echopixel has partnered with — among others — a company called Infinite Z, which has designed a virtual holographic tool called zSpace. This tool offers a combination of three elements that create an immersive 3D environment: stereoscopy, which provides depth perception; head tracking, which allows the user to look around objects; and prehension, or the ability to actually interact with virtual holographic objects.

“Images appear in open space and appear to do what the brain expects them to do,” said Dave Chavez, Infinite Z’s vice president for hardware engineering. “It allows you to use your intuition and analyze what is going on in front of you.”

A fourth element is necessary in order for this type of advanced visualization tool to be successful in the medical imaging field, and that, according to Aguirre, is the development of an appropriate clinical protocol to take advantage of this open visual space. The recent success of 3D motion picture technology, Aguirre said, demonstrates why an appropriate clinical protocol is necessary to for this kind of 3D visualization to be truly effective.

The movie “Avatar” was widely praised, Aguirre said, not only because it was an excellent movie, but because it was conceived and produced with 3D in mind right from the start.

Consequently, if you compare the quality of the “real” 3D in “Avatar” with other movies in which 3D has been added through a post-conversion process, “Avatar” is going to be far superior. “The 3D experience — and even the movie itself — will suffer in entertainment and visual value [in a post-conversion process] because you aren’t taking into account those additional components and variables you need to keep in mind when telling your story,” Aguirre said.

Having an appropriate clinical protocol in place, then, will be the difference between having “a fun, visual video game and being able to use a professional clinical tool,” Aguirre said. “That’s why we put a lot of emphasis on having that clinical protocol in place.”

So how will this kind of advanced technology affect the relative importance of spatial cognitive ability when it comes to evaluating medical images?

Mary Hegarty, PhD, a professor of psychology at the University of California Santa Barbara and director of the Hegarty Spatial Thinking Lab, suggested that working with holographic 3D images could make spatial cognitive ability less of a factor when it comes to reading medical images. “Spatial ability would probably be less important,” she said. “It’s as if the holographic images are doing the work for the person, so they don’t have to rely on their internal visualization.”

At the same time, she pointed out that research also suggests that in some cases advanced visualization technology is not necessarily a panacea for a lack of spatial cognitive ability. In a study she and Keehner were involved with, subjects were allowed to interact with a 3D object by rotating it on a computer screen. The subjects were supposed to visualize a cross section of that object and then rotate it until they reached that perspective.

“Some people spontaneously did this, while others rotated it, may have got lost and didn’t know where they were,” she said. “And that’s related to spatial ability.

“Sometimes the rich get richer with more advanced visualization,” she said. “But if it is very well defined, or if the tool basically gives you the information you would have needed to visualize it yourself, then I would expect effect of spatial cognition would get smaller.”

And that’s one of the concepts underlying True 3D. The technology allows physicians to grasp, manipulate and look at objects, Aguirre said, and that should affect the role that spatial cognition plays in interpreting images and increase “what we call the intuition part of looking at medical data and we believe this really helps doctors understand anatomy in a much easier and thorough way.”

Pages

 
Loading comments...

By clicking Accept, you agree to become a member of the UBM Medica Community.