The dual-layer platform can identify malicious instructions from a host computer.
Medical imaging devices could have a new option for cybersecurity protection that could also help eliminate human- and system-related errors.
With its dual-layer architecture, this new technique can pick up on potentially dangerous instructions that are transmitted to a medical device from a host computer. According to researchers, the system can detect up to 99 percent of abnormal information in CT systems.
Ben-Gurion University Ph.D. candidate Tom Mahler and his colleagues presented this work at the 2020 International Conference on Artificial Intelligence in Medicine on Aug. 26.
Related Content: The Importance of Cybersecurity in This Era of Radiology
According to Mahler, CT, MRI, and ultrasound machines are controlled by directions provided by a host computer. But, they can be infiltrated and compromised by cyberattacks, human errors, or software bugs. When this happens, they are vulnerable to receiving malicious instructions that can lead to radiation over-exposure, manipulation of device components, and image alteration.
To side-step these problems, Mahler and his team created a cybersecurity tool with a dual-layer architecture that can detect two types of anomalous instructions. They can be either context-free (CF) instructions that are unlikely values or directives, such as a 100-times increase in radiation dose, or context-sensitive (CS) instructions that are normal values or value combinations that could result in a mismatch of intended scan type, patient age, weight, or potential diagnosis. These types of situations can create patient harm, he said.
“For example, a normal instruction intended for an adult might be dangerous [anomalous] if applied to an infant,” he said. “Such instructions may be misclassified when using only the first, CF, layer; however, by adding the second, CS layer, they can now be detected.”
Mahler’s team tested and analyzed their new architecture on a CT system with 8,277 recorded CT instructions. They, then, evaluated the CS layer for four different types of clinical objective contexts, employing five supervised classification algorithms for each context. Adding the second CS layer, they said, boosted the overall anomaly detection performance to between 82 percent and 99 percent from 71.6 percent with just the CF layer.
Large Study Affirms Safety of Ultrasound Enhancing Agents for Echocardiography
May 16th 2025Those receiving ultrasound enhancing agents (UEAs) for transthoracic or stress echocardiography had lower odds of all-cause death in comparison to patients who did not have UEAs, according to a nationwide study involving 11.4 million patients.
Can Emerging AI Software Offer Detection of CAD on CCTA on Par with Radiologists?
May 14th 2025In a study involving over 1,000 patients who had coronary computed tomography angiography (CCTA) exams, AI software demonstrated a 90 percent AUC for assessments of cases > CAD-RADS 3 and 4A and had a 98 percent NPV for obstructive coronary artery disease.