Convolutional neural network accurately identifies “mass effect” lesions in more than 50 disease entities.
An artificial intelligence model based on MRI images can accurately identify which brain lesions cause mass effect and which do not for a wide variety of brain diseases, according to findings presented at SIIM2020.
Brain lesions have a number of diagnostically and prognostically relevant features – a key one being whether it exerts a “mass effect” – a distortion or compression of ventricles and sulci. To make this determination, investigators from the University of Pennsylvania, University of California San Francisco, and University of Texas Austin developed a convolutional neural network (CNN) that can be used across many underlying pathologies.
To create the CNN and achieve a high level of accuracy, they extracted T1 and T2-FLAIR images from 384 MRI studies (298 negative, 88 positive) of patients who had 60 different disease entities. Of those images 189 were used for training, 54 for validation, and 142 for a held-out test, ensuring that two-to-three samples were in the test set. In addition, they extracted cerebral spinal fluid masks from the T1 images, and the brain was extracted from the FLAIR image.
Related Content: MRI Distinguishes Brain Lesions
Overall, researchers determined their mass effect detection model was 84.5 percent accurate. The network, they said, performed well across 53 disease entities.
As next steps, the team plans to: classify negative mass effect, use multiple channels to improve tissue segmentation, and produce saliency maps to determine why the classifier is making its decisions.
For more coverage of SIIM2020, click here.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
Large Medicare Study Shows Black Men Less Likely to Receive PET and MRI for Prostate Cancer Imaging
August 3rd 2025An analysis of over 749,000 Medicare beneficiaries diagnosed with prostate cancer over a five-year period found that Black men were 13 percent less likely to receive PET imaging and 16 percent less likely to receive MRI in comparison to White men.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 3
August 3rd 2025In the last of a three-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, share additional insights on practical considerations and potential challenges in integrating abbreviated breast MRI into clinical practice, and offer their thoughts on future research directions.
Reducing the Interval Breast Cancer Rate of Screening DBT: Can AI Have an Impact?
August 3rd 2025In a retrospective review of screening digital breast tomosynthesis (DBT) exams for over 200 women with interval breast cancers, researchers found that AI provided accurate localization of cancers in 32.6 percent of the cases.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 3
August 3rd 2025In the third of a three-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, discuss strategies for maintaining the integrity of time-out procedures and communication with remote MRI scanning.