Detecting clinically significant disease among PI-RADS category 3 lesions may be improved by incorporating clinical parameters into risk stratification algorithms.
Incorporating clinical parameters into risk stratification algorithms may help clinicians detect clinically significant disease among PI-RADS category 3 lesions, according to a study published in the American Journal of Roentgenology.
Researchers from the University of Colorado in Aurora and Yale University in New Haven, Conn., sought to determine the frequency of clinically significant cancer (CSC) in Prostate Imaging Reporting and Data System (PI-RADS) category 3 (equivocal) lesions prospectively identified on multiparametric prostate MRI. They also wanted to identify risk factors (RFs) for CSC that may aid in decision making.
The imaging results of 977 men who underwent multiparametric prostate MRI and 342 who underwent MRI-ultrasound (US) fusion targeted biopsy were obtained for the trial; 474 lesions were retrospectively reviewed, and 111 were scored as PI-RADS category 3 and visualized using a 3-T MRI scanner. Multiparametric prostate MR images were prospectively interpreted by body subspecialty radiologists trained to use PI-RADS version 2. CSC was defined as a Gleason score of at least 7 on targeted biopsy. A multivariate logistic regression model was constructed to identify the RFs associated with CSC.
The results showed that 81 (73 percent) of the 111 category 3 lesions were benign; 11 lesions (9.9 percent) were clinically insignificant with a Gleason score of 6, and 19 lesions (17.1 percent) were clinically significant. On multivariate analysis, three RFs were identified as significant predictors of CSC:
• Older patient age
• Smaller prostate volume
• Abnormal digital rectal examination (DRE) findings
The risk of CSC for PI-RADS category 3 lesions were:
• 4 percent with 0
• 16 percent with 1
• 62 percent with 2
• 100 percent with 3
PI-RADS category 3 lesions for which two or more RFs were noted, such as age of 70 years or older; gland size 36 mL or smaller; or abnormal DRE findings, had a CSC detection rate of 67 percent with a sensitivity of 53 percent, a specificity of 95 percent, a positive predictive value of 67 percent, and a negative predictive value of 91 percent.
The researchers concluded that by incorporating clinical parameters into risk stratification algorithms, the ability to detect clinically significant disease among PI-RADS category 3 lesions may be improved and it may aid in the decision to perform biopsy.
Study Assesses Lung CT-Based AI Models for Predicting Interstitial Lung Abnormality
September 6th 2024A machine-learning-based model demonstrated an 87 percent area under the curve and a 90 percent specificity rate for predicting interstitial lung abnormality on CT scans, according to new research.
The Reading Room: Racial and Ethnic Minorities, Cancer Screenings, and COVID-19
November 3rd 2020In this podcast episode, Dr. Shalom Kalnicki, from Montefiore and Albert Einstein College of Medicine, discusses the disparities minority patients face with cancer screenings and what can be done to increase access during the pandemic.
New Study Identifies Key Computed Tomography Findings for Post-Op Recurrence of Pancreatic Cancer
August 22nd 2024For patients who had post-op recurrence after a Whipple procedure for pancreatic ductal adenocarcinoma (PDAC), between 80 to 86 percent of follow-up CT exams revealed new or increased soft tissue.