The typical CT exam exposes patients to the equivalent of between 100 and 250 chest x-rays. This fact escapes most physicians, including radiologists, according to Dianna D. Cody, Ph.D., chief of radiologic physics at the University of Texas M.D. Anderson Cancer Center.
The typical CT exam exposes patients to the equivalent of between 100 and 250 chest x-rays. This fact escapes most physicians, including radiologists, according to Dianna D. Cody, Ph.D., chief of radiologic physics at the University of Texas M.D. Anderson Cancer Center.
Cutting that dose is not easy, but it has to be done, she said at the Society for Imaging Informatics in Medicine annual meeting opening April 27 in Austin.
"CT really is a big monster," Cody said.
Although CT accounts for only about a third of the exams that involve ionizing radiation, it imposes two-thirds of the overall dose applied to patients. One in about four people underwent a CT exam in 2002, she said. Eleven percent of those exams were performed on children.
"This translates into more than seven million pediatric CT exams," she said.
Altering scan time, table pitch, collimation, and kilovoltage changes the effective dose, defined as the amount that goes to body organs. None has as great an effect as downsizing the kV. Unfortunately, dialing back the power can also have a dramatic effect on image quality, in some cases rendering the images diagnostically worthless, as noise and artifacts obscure disease processes.
Some compromise is needed, however, especially when imaging children.
Cody suggests settling on an acceptable level of noise in images and then running the CT to deliver images of that quality. The ideal would be establishment of some generally acceptable standards or guidelines for dose and image quality, but radiology so far has done very little in this regard.
"You would think that since CT is a big deal, somebody would be coming up with standards," Cody said. "But the only thing out there is a CT accreditation program from the American College of Radiology, which has established some reference values."
These values address acceptable doses for the head, adult abdomen, and pediatric abdomen of a five-year-old.
Until more detailed guidelines are provided, radiologists can turn to efforts by vendors to curb dosage, using algorithms that vary dosage according to body parts. Such body-dependent radiation typically applies lower doses to areas more easily penetrated and higher doses to difficult ones.
"The shoulders need lots of photons, but fewer are needed through the chest," Cody said.
The most sophisticated programs, such as one implemented by Siemens Medical Solutions, alter dosage on the fly based on attenuation values recorded over the previous 180° arc.
Meta-Analysis Shows Merits of AI with CTA Detection of Coronary Artery Stenosis and Calcified Plaque
April 16th 2025Artificial intelligence demonstrated higher AUC, sensitivity, and specificity than radiologists for detecting coronary artery stenosis > 50 percent on computed tomography angiography (CTA), according to a new 17-study meta-analysis.
Could Lymph Node Distribution Patterns on CT Improve Staging for Colon Cancer?
April 11th 2025For patients with microsatellite instability-high colon cancer, distribution-based clinical lymph node staging (dCN) with computed tomography (CT) offered nearly double the accuracy rate of clinical lymph node staging in a recent study.
The Reading Room: Racial and Ethnic Minorities, Cancer Screenings, and COVID-19
November 3rd 2020In this podcast episode, Dr. Shalom Kalnicki, from Montefiore and Albert Einstein College of Medicine, discusses the disparities minority patients face with cancer screenings and what can be done to increase access during the pandemic.
AMA Approves Category III CPT Codes for AI-Enabled Perivascular Fat Analysis from CT Scans
April 9th 2025Going into effect in 2026, the new CPT codes may facilitate increased adoption of the CaRi-Heart software for detecting coronary inflammation from computed tomography scans pending FDA clearance of the technology.
FDA Clears AI Assessment of Ischemic Core Volume on CT with Brainomix 360 Platform
April 8th 2025For patients with acute ischemic stroke, research has demonstrated that automated assessment of ischemic core volume on brain CT scans via the Brainomix 360 software is equivalent to that derived from CT perfusion.