• AI
  • Molecular Imaging
  • CT
  • X-Ray
  • Ultrasound
  • MRI
  • Facility Management
  • Mammography

'Dixon' technique improves 3T musculoskeletal MR

Article

Fat and water separation techniques in low- and midfield musculoskeletal MR scanning rely heavily on field homogeneity and cannot be used simultaneously. Scanning at 3T can overcome such constraints, according to Stanford University researchers in the U.S.

Dr. Scott B. Reeder and colleagues at Stanford and GE Medical Systems Applied Science Lab-West imaged the knees and ankles of five healthy volunteers. They combined steady-state free precession imaging at 3T with a method known as the Dixon technique, which allows for fat-water decomposition through the collection of multiple images at short echo time increments. The researchers found that use of the Dixon technique with SSFP imaging at 3T provided uniform and rapid fat suppression. They presented their preliminary results at the 2003 RSNA meeting.

"On multiple excitation scans, there's no time or SNR penalty for using Dixon, and it provides great fat suppression," said coauthor Dr. Garry E. Gold, an assistant professor of radiology at Stanford.

Combined with SSFP, the fat-water reduction technique could become a fast method for cartilage imaging and a routine technique for high-resolution imaging at 3T when combined with fast-spin echo, Gold said.

Recent Videos
Emerging Research at SNMMI Examines 18F-flotufolastat in Managing Primary and Recurrent Prostate Cancer
Could Pluvicto Have a Role in Taxane-Naïve mCRPC?: An Interview with Oliver Sartor, MD
New SNMMI President Cathy Cutler, PhD, Discusses Current Challenges and Goals for Nuclear Medicine
Where the USPSTF Breast Cancer Screening Recommendations Fall Short: An Interview with Stacy Smith-Foley, MD
A Closer Look at MRI-Guided Transurethral Ultrasound Ablation for Intermediate Risk Prostate Cancer
Improving the Quality of Breast MRI Acquisition and Processing
Can Fiber Optic RealShape (FORS) Technology Provide a Viable Alternative to X-Rays for Aortic Procedures?
Does Initial CCTA Provide the Best Assessment of Stable Chest Pain?
Making the Case for Intravascular Ultrasound Use in Peripheral Vascular Interventions
Can Diffusion Microstructural Imaging Provide Insights into Long Covid Beyond Conventional MRI?
Related Content
© 2024 MJH Life Sciences

All rights reserved.