Magnetic resonance imaging (MRI) with 7-Tesla ultrahigh-field-strength technology captures scar tissue and other abnormalities of patients with epilepsy, according to a study published online in the journal Radiology.
Magnetic resonance imaging (MRI) with 7-Tesla ultrahigh-field-strength technology captures scar tissue and other abnormalities of patients with epilepsy, according to a study published online in the journal Radiology.
A University of Minnesota team led by neurologist Thomas Henry, MD, used a 7-T magnet operated from a Siemens console and a 16-detector head coil to image the brains of 11 healthy subjects and eight patients with temporal lobe epilepsy (TLE). Typical MRI magnets are powered at 1.5 or 3 Teslas.
Epilepsy, a neurological disorder causing repeated seizures or convulsions, impacts about 1 percent of the population, according to the National Institutes of Health. Temporal lobe epilepsy is the most common form of the disease, caused by scarring inside the hippocampus, a major memory center of the brain. Many patients have severe memory problems, even in between seizures.
The team reviewed the MRIs for evidence of hippocampal atrophy, signal change, and malrotation with the Bernasconi definition. They also counted digitations of the hippocampal heads. All eight patients with epilepsy had hippocampal abnormalities. Closer analysis showed selective lateral Ammon horn atrophy in six patients and diffuse Ammon horn and dentate gyrus atrophy in one patient. The epileptic patients lacked hippocampal digitations on the seizure-causing brain hemisphere.
The clearer MRI images allowed Henry and his colleagues to more accurately find scar tissue associated with temporal lobe epilepsy, which neurosurgeons can remove to control epileptic seizures.
“When you see how much clearer these 7 Tesla images are, compared with standard MRI, it’s sort of like reading fine print with a magnifying glass versus the naked eye,” Henry said. “The possibility of using 7-Tesla MRI to find brain lesions that were missed on current brain scans is likely to be very helpful in epilepsy and many other conditions.”
Can Contrast-Enhanced Mammography be a Viable Screening Alternative to Breast MRI?
June 17th 2025While the addition of contrast-enhanced mammography (CEM) to digital breast tomosynthesis (DBT) led to over a 13 percent increase in false positive cases, researchers also noted over double the cancer yield per 1,000 women in comparison to DBT alone.
FDA Clears Enhanced MRI-Guided Laser Ablation System
June 5th 2025An alternative to an open neurosurgical approach, the Visualase V2 MRI-Guided Laser Ablation System reportedly utilizes laser interstitial thermal therapy (LITT) for targeted soft tissue ablation in patients with brain tumors and focal epilepsy.
Possible Real-Time Adaptive Approach to Breast MRI Suggests ‘New Era’ of AI-Directed MRI
June 3rd 2025Assessing the simulated use of AI-generated suspicion scores for determining whether one should continue with full MRI or shift to an abbreviated MRI, the authors of a new study noted comparable sensitivity, specificity, and positive predictive value for biopsies between the MRI approaches.