In a recent video interview, abdominal radiologist Sonia Gupta, MD discussed key principles in assessing potential alliances with artificial intelligence (AI) vendors and the potential of AI to alleviate the time-consuming, administrative aspects of patient care.
What are the key questions radiologists should ask when assessing artificial intelligence (AI) vendors? While the list can be long, one important question is ascertaining the volume and nature of the data used to develop and train a given AI algorithm, according to Sonia Gupta, MD, an abdominal radiologist, and chief medical officer at Change Healthcare.
In a recent video interview, Dr. Gupta said knowing the volume of cases that went into the training of an AI model is an important consideration as is the diversity of that data in terms of factors such as age, gender, health issues and comorbidities to name a few.
“All of those factors will influence the model training and ultimately the performance of that AI algorithm,” noted Dr. Gupta, who lectured about AI at the recent Society for Imaging Informatics in Medicine (SIIM) conference. “I encourage radiologists looking at potential AI vendors to dig into that information right off the bat.”
Other essential considerations include how the AI algorithm will be integrated into the current workflow and establishing timeline expectations for that integration into one’s radiology practice, according to Dr. Gupta, who is affiliated with Radiology Partners.
Dr. Gupta said there is a lot of potential for AI to mitigate some of the administrative burdens for radiologists and allow them to get back to the essentials of interpreting imaging and facilitating optimal patient care.
“I really want to see AI take the lead (in reducing administrative tasks) and make things easier so I can spend more time looking at the images and doing what I was trained to do,” added Dr. Gupta.
For more insights from Dr. Gupta, watch the video below:
Possible Real-Time Adaptive Approach to Breast MRI Suggests ‘New Era’ of AI-Directed MRI
June 3rd 2025Assessing the simulated use of AI-generated suspicion scores for determining whether one should continue with full MRI or shift to an abbreviated MRI, the authors of a new study noted comparable sensitivity, specificity, and positive predictive value for biopsies between the MRI approaches.
Can AI Assessment of PET Imaging Predict Treatment Outcomes for Patients with Lymphoma?
June 2nd 2025The use of adjunctive AI software with pre-treatment PET imaging demonstrated over a fourfold higher likelihood of predicting progression-free survival (PFS) in patients being treated for lymphoma, according to a new meta-analysis.
Mammography AI Platform for Five-Year Breast Cancer Risk Prediction Gets FDA De Novo Authorization
June 2nd 2025Through AI recognition of subtle patterns in breast tissue on screening mammograms, the Clairity Breast software reportedly provides validated risk scoring for predicting one’s five-year risk of breast cancer.
Breast MRI and Background Parenchymal Enhancement: What a Meta-Analysis Reveals
May 29th 2025Moderate or marked background parenchymal enhancement (BPE) reduces the sensitivity and specificity of MRI for breast cancer detection by more than 10 percent in comparison to scans with minimal or mild BPE, according to a new meta-analysis.