Amalgam fillings may pose a risk not only to patients, but to staff.
Mercury from amalgam fillings may be released when patients are exposed to high-strength MR imaging, according to a study published in the journal Radiology.
Researchers from Turkey sought to evaluate ex vivo mercury release from dental amalgam after 7.0-T and 1.5-T MRI. “In a completely hardened amalgam, approximately 48 hours after placing on teeth, mercury becomes attached to the chemical structure, and the surface of the filling is covered with an oxide film layer,” lead author, Selmi Yilmaz, Ph.D., a dentist and faculty member at Akdeniz University in Antalya, Turkey, said in a release. “Therefore, any mercury leakage is minimal.”
The researchers evaluated 60 caries-free molar or premolar teeth that had been extracted for clinical indications. Two-sided cavities were opened in each tooth and amalgam fillings applied. After nine days, two groups of 20 randomly selected teeth were placed in 20 mL of artificial saliva immediately followed by 20 minutes of MRI exposure at 1.5 or 7.0 T. A control group of
teeth was placed in artificial saliva without undergoing MRI exposure. The teeth were removed from the artificial saliva 24 hours later, and the saliva was analyzed for mercury content by using inductively coupled plasma mass spectrometry.
The results showed the mean mercury content of the artificial saliva was 673 micrograms/L ± 179 in the 7.0-T MRI group, 172 micrograms/L ± 60 in the 1.5-T MRI group, and 141 micrograms/L ± 152 in the control group. The mercury content in the 7.0-T group was greater than that in
both the 1.5-T and the control group. There was no statistically significant difference in mercury content between the 1.5-T and control groups.
“In our study, we found very high values of mercury after ultra-high-field MRI,” Yilmaz said in the release. “This is possibly caused by phase change in amalgam material or by formation of microcircuits, which leads to electrochemical corrosion, induced by the magnetic field.”
The researchers concluded that further studies may be warranted to evaluate the relationship between high-field MRI and the release of mercury from dental amalgam. “Although it is not clear how much of this released mercury form is absorbed by the body, the study findings indicate that amalgam fillings may pose a risk not only to patients, but to staff, too,” Yilmaz said.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
July 22nd 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.
Stroke MRI Study Assesses Impact of Motion Artifacts Upon AI and Radiologist Lesion Detection
July 16th 2025Noting a 7.4 percent incidence of motion artifacts on brain MRI scans for suspected stroke patients, the authors of a new study found that motion artifacts can reduce radiologist and AI accuracy for detecting hemorrhagic lesions.