We all make mistakes, and some cost more than others. Now, researchers have peered inside the brain to see what happens at the moment we realize our error -- and its price. Their findings may have implications for understanding obsessive-compulsive disorder.
We all make mistakes, and some cost more than others. Now, researchers have peered inside the brain to see what happens at the moment we realize our error - and its price. Their findings may have implications for understanding obsessive-compulsive disorder.
Dr. Stephan Taylor, an associate professor of psychiatry at the University of Michigan Medical School, and colleagues used fMRI to image 12 healthy adults who were asked to respond to a series of 360 visual-based tests. Results were published April 12 in the Journal of Neuroscience.
Some tests carried a monetary reward between a quarter and $2, while some carried penalties of the same size. Others carried no reward or penalty. The participants were told they had a $10 "credit" to begin and that they would receive real cash depending on their balance at the end.
The participants had to correctly, and within a deadline of a few hundred milliseconds, press a button corresponding to one of two alphabetic letter pairs. They were instructed to determine which letter was the odd one out in a series of other letters. Some of the letter sequences were more confusing than others. Subjects received immediate feedback telling them if they were wrong or too late in responding.
Researchers found that a particular part of the brain called the rostral anterior cingulate cortex, or rACC, becomes much more active when a person realizes he or she has made an error that carries consequences, such as losing money.
By contrast, the same area of the brain does not show the same level of activity when the mistake doesn't carry a penalty or when a correct action carries a reward. The rACC is thought to be involved with emotional responses, and scientists had suspected it might also be involved in response to costly errors. But this is the first brain imaging study to test that idea, according to Taylor.
These researchers had previously shown that the rACC area became much more active in response to a no-penalty error in the brains of a small group of obsessive-compulsive disorder patients, compared with people without the condition. OCD is often characterized by an untoward anxiety or fear about errors or failures in certain aspects of everyday life. Repetitive patterns of behavior are a mechanism to ward off or prevent such events.
"It's very interesting to us that the same part of the brain that responded in our OCD study on regular, no-cost errors also responded in healthy individuals when we made the error count more," Taylor said.
Investigators want to study patients with OCD using the same experiment to help pinpoint which of their brain circuits have gone awry.
For more information from the Diagnostic Imaging archives: '
Supertensor imaging locates complex fibers
Imaging genomics unveils roots of aggression
Strategic goals take shape in functional brain MR imaging
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
July 22nd 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.
Stroke MRI Study Assesses Impact of Motion Artifacts Upon AI and Radiologist Lesion Detection
July 16th 2025Noting a 7.4 percent incidence of motion artifacts on brain MRI scans for suspected stroke patients, the authors of a new study found that motion artifacts can reduce radiologist and AI accuracy for detecting hemorrhagic lesions.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
July 22nd 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.
Stroke MRI Study Assesses Impact of Motion Artifacts Upon AI and Radiologist Lesion Detection
July 16th 2025Noting a 7.4 percent incidence of motion artifacts on brain MRI scans for suspected stroke patients, the authors of a new study found that motion artifacts can reduce radiologist and AI accuracy for detecting hemorrhagic lesions.
2 Commerce Drive
Cranbury, NJ 08512