The MR community has a new king of the hill. The University of Illinois at Chicago on Sept. 21 began operating a 9.4T MR scanner. The scanner, the most powerful such machine in the world for human studies, reveals not only anatomy but metabolism.The custom-built scanner will help make UIC’s new Center for Magnetic Resonance Research a premier international center for human brain research, according to center director Dr. Keith Thulborn.
The MR community has a new king of the hill. The University of Illinois at Chicago on Sept. 21 began operating a 9.4T MR scanner. The scanner, the most powerful such machine in the world for human studies, reveals not only anatomy but metabolism.
The custom-built scanner will help make UIC's new Center for Magnetic Resonance Research a premier international center for human brain research, according to center director Dr. Keith Thulborn.
"Brain scanning is pushed to the limit with the current technology. We need the sensitivity of the 9.4T magnet to go beyond anatomic imaging to metabolic imaging," he said.
UIC will soon be joined by the University of Minnesota in Minneapolis, which has ramped up its custom-built 9.4T scanner but is waiting on the installation of a radio-frequency amplifier.
"Everything is in place except that one piece of hardware," said Michael Garwood, Ph.D., a professor of radiology at Minnesota.
The UIC system will provide the horsepower to conduct MR spectroscopy of sodium, phosphorus, carbon, nitrogen, and oxygen--elements involved in the metabolic processes of human thought. These and other spectra, along with ultrahigh-resolution images, may help identify and monitor common conditions and diseases of the brain, including stroke, Alzheimer's, autism, and mental illness.
The scanner promises to help UIC researchers better understanding the function of the human brain, detect the earliest signs of disease, and develop targeted drug therapies. Thulborn also plans to apply the 9.4T system to observing cognitive learning disorders, including attention deficit disorder.
He and his staff coordinated development of the 9.4T system, a formidable task that brought together equipment and expertise from multiple vendors. The magnet and gradients were built by GE, but the rest of the system is a collage of subsystems from multiple sources. The scanner electronics, built on a Linux-based Paravision operating system, came from Bruker Medical Systems. The broadband subsystem supports four excitation and receiver systems for parallel imaging. The imaging gradient power supplies, newly released high-performance products from Copley Controls, were designed to be controlled by the Bruker console. The room temperature shimming system to maximize the magnetic field homogeneity was supplied by Resonance Research Systems.
Work on these systems has helped pave the way to new venues of study to be explored at 9.4T. Among them is the visualization at 3T of individual human thought patterns as part of a study into dynamic cognitive processes. Thulborn described the accomplishment as opening a new horizon for neuroscience.
Can Contrast-Enhanced Mammography be a Viable Screening Alternative to Breast MRI?
June 17th 2025While the addition of contrast-enhanced mammography (CEM) to digital breast tomosynthesis (DBT) led to over a 13 percent increase in false positive cases, researchers also noted over double the cancer yield per 1,000 women in comparison to DBT alone.
FDA Clears Enhanced MRI-Guided Laser Ablation System
June 5th 2025An alternative to an open neurosurgical approach, the Visualase V2 MRI-Guided Laser Ablation System reportedly utilizes laser interstitial thermal therapy (LITT) for targeted soft tissue ablation in patients with brain tumors and focal epilepsy.
Possible Real-Time Adaptive Approach to Breast MRI Suggests ‘New Era’ of AI-Directed MRI
June 3rd 2025Assessing the simulated use of AI-generated suspicion scores for determining whether one should continue with full MRI or shift to an abbreviated MRI, the authors of a new study noted comparable sensitivity, specificity, and positive predictive value for biopsies between the MRI approaches.