MRI findings show that astronauts exposed to zero gravity for prolonged periods can develop brain and eye abnormalities.
MRI findings show that astronauts exposed to zero gravity for prolonged periods can develop brain and eye abnormalities, according to a recent study in the journal Radiology.
Researchers from the University of Texas Medical School at Houston examined 27 astronauts who participated in space shuttle or space station missions that lasted an average of 108 days. Eight astronauts who returned to space for a second mission for and additional average of 39 days underwent repeat imaging upon their return.
Looking for changes in the astronauts’ intracranial and intraorbital spaces, the researchers performed 3-T MR imaging with use of thin-section, 3-dimensional, axial T2-weighted orbital and conventional brain sequences. The optic nerve sheath (ONSD) and optic nerve diameter (OND) were quantified in the retrolaminar optic nerve. OND and central optic nerve T2 hyperintensity were quantified at mid orbit.
Qualitative analysis of the optic nerve sheath, optic disc, posterior globe, and pituitary gland morphology were also performed.
The MRIs showed findings among the astronauts that were similar to those found in patients who have intracranial hypertension that has no known cause for the increased pressure around the brain. In these patients, pressure is put on the juncture between the optic nerve and the eyeball, which can result in visual problems.
Among the astronauts who had more than 30 days of cumulative lifetime exposure to microgravity, nine (33 percent) experienced expansion of the cerebrospinal fluid space and the optic nerve; six (22 percent) had flattening of the rear of the eyeball; four (15 percent) experienced bulging of the optic nerve; and three (11 percent) showed changes in the pituitary gland and its connection to the brain.
None of these findings were conclusive of intracranial pressure, and they did not result in any astronaut being grounded.
In response to the findings, Larry A. Kramer, MD, professor of diagnostic and interventional imaging at the university, and lead author said, “Microgravity-induced intracranial hypertension represents a hypothetical risk factor and potential limitation to long-duration space travel.” This issue has is now added to other known potential problems to human health from space travel, and NASA will continue this line of study.
Sagittal oblique T2-weighted MR images. (a) Image of left eye before long-term exposure to microgravity. Note convexity of posterior globe (arrows). (b) Image of left eye after long-term exposure to microgravity. Note loss of convexity of the posterior scleral margin (arrows). (c) Image of right eye of different astronaut. Note two abruptly angulated foci (long arrows) in optic nerve sheath and posterior globe flattening (short arrows). Images courtesy Radiological Society of North America.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
Large Medicare Study Shows Black Men Less Likely to Receive PET and MRI for Prostate Cancer Imaging
August 4th 2025An analysis of over 749,000 Medicare beneficiaries diagnosed with prostate cancer over a five-year period found that Black men were 13 percent less likely to receive PET imaging and 16 percent less likely to receive MRI in comparison to White men.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 3
August 4th 2025In the last of a three-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, share additional insights on practical considerations and potential challenges in integrating abbreviated breast MRI into clinical practice, and offer their thoughts on future research directions.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 3
August 4th 2025In the third of a three-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, discuss strategies for maintaining the integrity of time-out procedures and communication with remote MRI scanning.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
August 4th 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.