Multiparametric MRI helps identify low- and high-grade brain gliomas, reducing risk of inappropriate or delayed surgery.
Multiparametric MR imaging significantly improved discrimination between low- and high-grade brain gliomas, according to a study published in the journal Radiology.
Researchers from Italy undertook a retrospective study to determine how multiparametric MR imaging, taking into account the heterogeneity of the lesions at MR imaging, affected current radiologic reporting methods and grading of brain gliomas.
A total of 118 patients with histologically confirmed brain gliomas were evaluated. The patients had undergone conventional and advanced MR sequences (perfusion-weighted imaging, MR spectroscopy, and diffusion-tensor imaging). Three evaluations were conducted:
The researchers found that there were significant differences in age, relative cerebral blood volume (rCBV) in contrast-enhanced regions (area under the ROC curve [AUC] = 0.937), areas of lowest signal intensity on T2-weighted images, restricted diffusivity regions, and choline/creatine ratio in regions with the lowest signal intensity on T2-weighted images.
“[Discriminant function analysis] (DFA) that included age; rCBV in contrast-enhanced regions, areas of lowest signal intensity on T2-weighted images, and areas of restricted diffusivity; and choline/creatine ratio in areas with lowest signal intensity on T2-weighted images was used to classify 95 percent of patients correctly,” the authors wrote. “Quantitative analysis showed a higher concordance with histologic findings than qualitative and semiquantitative methods (P < .0001).”
The researchers concluded that quantitative multiparametric MR imaging evaluation incorporating heterogeneity at MR imaging significantly improved discrimination between low- and high-grade brain gliomas with a very high AUC. This reduced the risk of inappropriate or delayed surgery.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
July 22nd 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.
Stroke MRI Study Assesses Impact of Motion Artifacts Upon AI and Radiologist Lesion Detection
July 16th 2025Noting a 7.4 percent incidence of motion artifacts on brain MRI scans for suspected stroke patients, the authors of a new study found that motion artifacts can reduce radiologist and AI accuracy for detecting hemorrhagic lesions.