Multiparametric MRI helps identify low- and high-grade brain gliomas, reducing risk of inappropriate or delayed surgery.
Multiparametric MR imaging significantly improved discrimination between low- and high-grade brain gliomas, according to a study published in the journal Radiology.
Researchers from Italy undertook a retrospective study to determine how multiparametric MR imaging, taking into account the heterogeneity of the lesions at MR imaging, affected current radiologic reporting methods and grading of brain gliomas.
A total of 118 patients with histologically confirmed brain gliomas were evaluated. The patients had undergone conventional and advanced MR sequences (perfusion-weighted imaging, MR spectroscopy, and diffusion-tensor imaging). Three evaluations were conducted:
The researchers found that there were significant differences in age, relative cerebral blood volume (rCBV) in contrast-enhanced regions (area under the ROC curve [AUC] = 0.937), areas of lowest signal intensity on T2-weighted images, restricted diffusivity regions, and choline/creatine ratio in regions with the lowest signal intensity on T2-weighted images.
“[Discriminant function analysis] (DFA) that included age; rCBV in contrast-enhanced regions, areas of lowest signal intensity on T2-weighted images, and areas of restricted diffusivity; and choline/creatine ratio in areas with lowest signal intensity on T2-weighted images was used to classify 95 percent of patients correctly,” the authors wrote. “Quantitative analysis showed a higher concordance with histologic findings than qualitative and semiquantitative methods (P < .0001).”
The researchers concluded that quantitative multiparametric MR imaging evaluation incorporating heterogeneity at MR imaging significantly improved discrimination between low- and high-grade brain gliomas with a very high AUC. This reduced the risk of inappropriate or delayed surgery.
Emerging AI Algorithm Shows Promise for Abbreviated Breast MRI in Multicenter Study
April 25th 2025An artificial intelligence algorithm for dynamic contrast-enhanced breast MRI offered a 93.9 percent AUC for breast cancer detection, and a 92.3 percent sensitivity in BI-RADS 3 cases, according to new research presented at the Society for Breast Imaging (SBI) conference.
Could AI-Powered Abbreviated MRI Reinvent Detection for Structural Abnormalities of the Knee?
April 24th 2025Employing deep learning image reconstruction, parallel imaging and multi-slice acceleration in a sub-five-minute 3T knee MRI, researchers noted 100 percent sensitivity and 99 percent specificity for anterior cruciate ligament (ACL) tears.
New bpMRI Study Suggests AI Offers Comparable Results to Radiologists for PCa Detection
April 15th 2025Demonstrating no significant difference with radiologist detection of clinically significant prostate cancer (csPCa), a biparametric MRI-based AI model provided an 88.4 percent sensitivity rate in a recent study.