Image analysis method allows clinicians to more accurately see changes in the brains of patients with schizophrenia based on specific therapies.
A new tool can improve how functional MRI (fMRI) analyzes key brain patterns associated with particular types of mental illness, such as schizophrenia, improving diagnosis and treatment assessments, according to researchers.
In a new article published in NeuroImage, investigators from the University of Maryland, Baltimore County, detailed a new image analysis method, called independent vector analysis for common subspace extraction (IVA-CS), can be used to categorize subgroups of fMRI data based only on brain activity.
Spatial maps of the common components in six categories: Motor; COG, cognitive control; DM, default mode; AUD, auditory, VIS, visual; CB, cerebellum. (a)–(d) for SZ group and (e)–(h) for HC group. The number of independent components (ICs) that are composited in each subfigure is listed and different colors refer to the spatial maps of individual components. The anatomical regions of the activation in the common components are provided in the supplementary materials. Courtesy: NeuroImage
This capability, said Tülay Adali, Ph.D., distinguished university professor, and Qunfang Long, an electrical engineering Ph.D., candidate, confirms the connection between brain activity and various mental illnesses. In particular, they said, using IVA-CS, they were able to identity subgroups of schizophrenia patients by the fMRI data they evaluated.
“The most exciting part is that we found out the identified subgroups possess clinical significance by looking at their diagnostic symptoms,” Long said in a statement. “This finding encouraged us to put more effort into the study of subtypes of patients with schizophrenia using neuroimaging data.”
Prior to their discovery, a clear way to group schizophrenia patients based on brain imaging alone did not exist. Their IVA-CS method is particularly useful, they explained, because it maintains the nuances in the data, but it still renders statistically significant groupings.
Related Content: Brain fMRI Might Not Be As Reliable As Once Believed
“Now that data-driven methods have gained popularity, a big challenge has been capturing the variability for each subject while simultaneously performing analysis on fMRI datasets from a large number of subjects,” Adali said. “Now, we can perform this analysis effectively, and can identify meaningful groupings of subjects.”
Clinical Impact
In addition to data analysis, IVA-CS is clinically valuable. Depending on the patient, a mental illness can present in a variety of ways, and treatments are rarely one-size-fits-all. Consequently, there has been a need for a method to determine whether a particular therapy has been impactful.
By working collaboratively with Vince Calhoun, Ph.D., director of the Center for Translational Research in Neuroimaging and Data Science at Georgia State University, Adali and Long’s development can give clinicians an objective way to analyze fMRI results over time from patients from a similar diagnostic subgroup, making it easier for them to spot changes in response to treatment.
To make IVA-CS further valuable to patient care, Adali and Long have plans for a longitudinal study that will investigate which treatments are most effective for patients with specific mental illnesses, such as addiction and substance abuse in adolescents.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
Large Medicare Study Shows Black Men Less Likely to Receive PET and MRI for Prostate Cancer Imaging
August 3rd 2025An analysis of over 749,000 Medicare beneficiaries diagnosed with prostate cancer over a five-year period found that Black men were 13 percent less likely to receive PET imaging and 16 percent less likely to receive MRI in comparison to White men.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 3
August 3rd 2025In the last of a three-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, share additional insights on practical considerations and potential challenges in integrating abbreviated breast MRI into clinical practice, and offer their thoughts on future research directions.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 3
August 3rd 2025In the third of a three-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, discuss strategies for maintaining the integrity of time-out procedures and communication with remote MRI scanning.
Study Reveals Significant Prevalence of Abnormal PET/MRI and Dual-Energy CT Findings with Long Covid
August 3rd 2025In a prospective study involving nearly 100 patients with Long Covid, 57 percent of patients had PET/MRI abnormalities and 90 percent of the cohort had abnormalities on dual-energy CT scans.