Optically pumped magnetometer sensor detects magnetic signals that could augment the detection of traumatic brain injury and disease.
A newly developed sensor can measure weak magnetic brain signals that are easier to pinpoint than the electrical signals picked up by electroencephalogram.
These magnetic signals, measured by magnetoencephalography (MEG), are useful for earlier and more accurate diagnosis, potentially improving how providers understand connectivity in the brain and detecting signs of traumatic brain injury, dementia, and schizophrenia.
A team from the University of Birmingham in the United Kingdom published their work recently in NeuroImage.
“We know that early diagnosis improves outcomes and this technology could provide the sensitivity to detect the earliest changes in brain activity in conditions like schizophrenia, dementia, and ADHD,” said Ole Jensen, neuroscience professor and co-director of the University of Birmingham’s Centre for Human Brain Health.
For more coverage based on industry expert insights and research, subscribe to the Diagnostic Imaging e-Newsletter here.
To reach that goal, a team of scientists led by Anna Kowalczyk, a physicist with the School of Physics and Astronomy and the School of Psychology, designed a new optically pumped magnetometer (OPM) sensor that uses polarized light to detect changes in orientation of the way atoms spin when they are exposed to a magnetic field. These sensors are used in the MEG laboratories.
According to their results, not only do these sensors do a better job than commercially available sensors of detecting brain signals, but they also can distinguish them from background magnetic noise. Being able to make that differentiation means there is a possibility of MEG testing outside a specialized unit or hospital ward.
In addition, Kowalczyk said, the OPM sensor does not require a helium-cooling system to keep it constantly cool, nor does it need a zero-magnetic field environment to pick up brain signals. As a result, she said, the expectation is that these new sensors will extend the use of MEG for diagnosis and treatment.
The team is currently looking for research partners, they said, to explore how this sensor can be used for better diagnostics in neurological injury, neurological disorders, such as dementia, and psychiatric disorders, such as schizophrenia.
GE HealthCare Launches AI Mammography Platform with Key Applications from iCAD
November 30th 2023Offering an all-in-one platform of artificial intelligence (AI) applications, MyBreastAI Suite reportedly facilitates early breast cancer detection and enhances efficiency with breast imaging workflows.
Study: Black Patients Less Likely Than Others to Receive MRI Assessment of Cognitive Impairment
November 27th 2023In a four-year study of over 1,600 patients who had outpatient head CTs, head CT angiography and/or brain MRI to assess cognitive impairment, researchers found that Black patients were over 9 percent less likely than White patients and over 16 percent less likely than Hispanic patients to receive brain MRI.
Could an Emerging AI System Lead to Earlier Autism Detection with DT-MRI?
November 21st 2023Through assessment of diffusion tensor MRI of the brain, a new AI system reportedly offers a 97 percent sensitivity rate in diagnosing autism in children between two to four years of age, according to research to be presented at the annual Radiological Society of North America (RSNA) conference next week.