Study from NIST shows great variation between MRI scanners from multiple vendors, limiting accuracy and diagnostic confidence.
Quantitative MRI does a better job with disease detection and diagnosis, but greater levels of quality control are needed to maximize its abilities.
In a study published Wednesday in PLOS One, investigators from the National Institute of Standards and Technology (NIST), examined measurement variations in these scanners that offer greater accuracy, repeatability, and speed.
“We suggest establishing rigorous quality control procedures for quantitative MRI to promote confidence and stability in associated measurement techniques and to enable translation of measurement thresholds for diagnostic, disease progression, and treatment monitoring from the research center to the entire clinical community and back,” said the team led by Katy Keenan, Ph.D., NIST’s Quantitative Magnetic Resonance Imaging Project leader.
Quantitative MRI has been heralded as a way to provide consistent disease detection, diagnosis, and treatment without the need of a tissue biopsy. It outpaces traditional MRI, the team said, as conventional methods can produce subjective image analysis and contradictory images. For quantitative MRI to be truly reliable, though, the numerical measurements it captures should be consistent across different patients, scanners, and clinical environments.
To test that consistency, the NIST team, which included investigators from 11 institutions, compared measurements captured by 27 MRI scanners produced by three vendors (GE Healthcare, Siemens Healthineers, and Philips) at nine clinical sites. They used a NIST-produced phantom for the scans to obtain reference values and disentangle any sources of bias, they said.
The team compared T1 measurements across scanners – it’s one of the parameters that could be measured by clinical MRI systems. However, they determined that these values can be subject to significant bias and variation. From their analysis, there was no consistent pattern of discrepancy between vendors, meaning that the diagnostic threshold value determined on one MRI scanner can’t transfer to other systems, they said.
Consequently, they said, it is possible that such a variation could make a clinical difference and affect patient care, such as misdiagnosing a benign or malignant brain tumor.
Ultimately, they said, rigorous quality control procedures could lead to greater confidence and measurement stability. It could also make it easier to transfer measurement threshold for diagnosis, disease progression, and treatment monitoring between research and clinical venues.
For more coverage based on industry expert insights and research, subscribe to the Diagnostic Imaging e-Newsletter here.
Can Contrast-Enhanced Mammography be a Viable Screening Alternative to Breast MRI?
June 17th 2025While the addition of contrast-enhanced mammography (CEM) to digital breast tomosynthesis (DBT) led to over a 13 percent increase in false positive cases, researchers also noted over double the cancer yield per 1,000 women in comparison to DBT alone.
FDA Clears Enhanced MRI-Guided Laser Ablation System
June 5th 2025An alternative to an open neurosurgical approach, the Visualase V2 MRI-Guided Laser Ablation System reportedly utilizes laser interstitial thermal therapy (LITT) for targeted soft tissue ablation in patients with brain tumors and focal epilepsy.
Possible Real-Time Adaptive Approach to Breast MRI Suggests ‘New Era’ of AI-Directed MRI
June 3rd 2025Assessing the simulated use of AI-generated suspicion scores for determining whether one should continue with full MRI or shift to an abbreviated MRI, the authors of a new study noted comparable sensitivity, specificity, and positive predictive value for biopsies between the MRI approaches.