Announcement opens the 10th annual Brain Tumor Segmentation challenge.
The Radiology Society of North America (RSNA), along with the American Society of Neuroradiology and the Medical Image Computing and Computer Assisted Interventions Society, announced the launch of the 10th annual Brain Tumor Segmentation (BraTS) challenge on Wednesday.
This year’s challenge will be somewhat different, according to RSNA officials.
“RSNA has significantly ‘upped their game’ with this year’s Brain Tumor Classification Challenge,” said Adam E. Flanders, M.D., a member of the RSNA Machine Learning Subcommittee. “It is our first [Artificial Intelligence] Challenge to use MRI, and it is also our first to address an oncology problem – brain cancer.”
This year’s challenge focuses on brain tumor detection and classification using multi-parametric MRI (mpMRI) scans. In a novel move, the challenge also asks participants to address two clinically relevant tasks:
“These genetic markers are indicators of treatment response and survival,” Flanders said. “This has potential use in planning for customized therapies even before surgery is performed.”
The challenge involves two tasks, and participants can opt to compete in one or both.
For Brain Tumor Segmentation, participants will be asked to build models that can produce detailed segmentations of sub-regions of the brain tumor that correspond to those created by neuroradiologists. These segmentations could potentially improve computer-assisted surgery, radiotherapy guidance, and disease-progression monitoring.
For Brain Tumor Radiogenomic Classification, participants will use mpMRI imaging to build models that can predict MGMT (O[6]-methylguanine-DNA methyltransferase) promoter methylation status. It is possible these models could make diagnosis, prognosis, and treatment planning for patients with glioblastoma more efficient and accurate.
All final model challenge submissions are due Oct. 12. Winners will be announced on Nov. 23 and will be recognized during an event held in the AI Showcase Theater at RSNA 2021 on Nov. 29. Intel, NeoSoma, and RSNA are provided the prize money for the top entries.
For more coverage based on industry expert insights and research, subscribe to the Diagnostic Imaging e-Newsletter here.
Could AI-Powered Abbreviated MRI Reinvent Detection for Structural Abnormalities of the Knee?
April 24th 2025Employing deep learning image reconstruction, parallel imaging and multi-slice acceleration in a sub-five-minute 3T knee MRI, researchers noted 100 percent sensitivity and 99 percent specificity for anterior cruciate ligament (ACL) tears.
The Reading Room Podcast: Emerging Trends in the Radiology Workforce
February 11th 2022Richard Duszak, MD, and Mina Makary, MD, discuss a number of issues, ranging from demographic trends and NPRPs to physician burnout and medical student recruitment, that figure to impact the radiology workforce now and in the near future.
What is the Best Use of AI in CT Lung Cancer Screening?
April 18th 2025In comparison to radiologist assessment, the use of AI to pre-screen patients with low-dose CT lung cancer screening provided a 12 percent reduction in mean interpretation time with a slight increase in specificity and a slight decrease in the recall rate, according to new research.
Meta-Analysis Shows Merits of AI with CTA Detection of Coronary Artery Stenosis and Calcified Plaque
April 16th 2025Artificial intelligence demonstrated higher AUC, sensitivity, and specificity than radiologists for detecting coronary artery stenosis > 50 percent on computed tomography angiography (CTA), according to a new 17-study meta-analysis.