
RSNA Launches First MRI AI Challenge
Announcement opens the 10th annual Brain Tumor Segmentation challenge.
The Radiology Society of North America (RSNA), along with the American Society of Neuroradiology and the Medical Image Computing and Computer Assisted Interventions Society, announced the launch of the 10th annual Brain Tumor Segmentation (BraTS) challenge on Wednesday.
This year’s
“RSNA has significantly ‘upped their game’ with this year’s Brain Tumor Classification Challenge,” said Adam E. Flanders, M.D., a member of the RSNA Machine Learning Subcommittee. “It is our first [Artificial Intelligence] Challenge to use MRI, and it is also our first to address an oncology problem – brain cancer.”
This year’s challenge focuses on brain tumor detection and classification using multi-parametric MRI (mpMRI) scans. In a novel move, the challenge also asks participants to address two clinically relevant tasks:
- Develop the most accurate automated method for measuring the size of the visual components of a cancer, affecting the ability to precisely track growth or treatment response.
- Develop a reliable non-invasive method using MR images alone that can predict the presence of specific genetic tumor features.
“These genetic markers are indicators of treatment response and survival,” Flanders said. “This has potential use in planning for customized therapies even before surgery is performed.”
The challenge involves two tasks, and participants can opt to compete in one or both.
For
For
All final model challenge submissions are due Oct. 12. Winners will be announced on Nov. 23 and will be recognized during an event held in the AI Showcase Theater at RSNA 2021 on Nov. 29. Intel, NeoSoma, and RSNA are provided the prize money for the top entries.
For more coverage based on industry expert insights and research, subscribe to the Diagnostic Imaging e-Newsletter
Newsletter
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.


































