Reader confidence and self-directed learning impacts prostate tumor detection through MR images.
Self-directed learning impacts prostate tumor detection from MRI, according to a study published in the American Journal of Roentgenology.
Researchers from NYU Langone Medical Center in New York evaluated the roles of self-directed learning and continual feedback in the learning curve for tumor detection by novice readers of prostate MRI.
The study included 124 prostate MRI examinations; 52 were classified as positive (PI-RADS category 3 or higher lesion showing Gleason score ≥ 7 tumor at MRI-targeted biopsy) and 72 as negative (PI-RADS category 2 or lower and negative biopsy). These were divided into four equal-sized batches, each with matching numbers of positive and negative examinations and given to six second-year radiology residents for review examinations. Three readers received feedback after each examination showing the preceding case's solution. The learning curve, plotting accuracy over time, was assessed by the Akaike information criterion (AIC).
The results showed some improvement for both groups:
-Accuracy improvement (without a difference in the extent of improvement): 58.1% (batch 1) to 71.0-75.3% (batches 2-4) without feedback
58.1% to 72.0-77.4% with feedback
- Specificity improvement (without a difference in the etxtent of improvement): 53.7% to 68.5%-81.5% without feedback
55.6% to 74.1-81.5% with feebac
-Sensitivity improvement: 59.0-61.5% (batches 1-2) to 71.8-76.9% (batches 3-4) with feedback
Did not improvement without feedback
Sensitivity for transition zone tumors exhibited larger changes with feedback than without feedback, but sensitivity for peripheral zone tumors did not improve in either group. Reader confidence increased only with feedback.
The researchers concluded that the learning curve in prostate tumor detection largely reflected self-directed learning and continual feedback had a lesser effect. Clinical prostate MRI interpretation by novice radiologists warrants caution.
MRI or Ultrasound for Evaluating Pelvic Endometriosis?: Seven Takeaways from a New Literature Review
September 13th 2024While noting the strength of MRI for complete staging of disease and ultrasound’s ability to provide local disease characterization, the authors of a new literature review suggest the two modalities offer comparable results for diagnosing pelvic endometriosis.
Diffusion-Weighted MRI and Neoadjuvant Chemotherapy for Rectal Cancer: What New Research Reveals
September 3rd 2024In a comparison of imaging assessments to gauge the effectiveness of neoadjuvant chemotherapy for rectal adenocarcinoma, researchers found the combination of diffusion-weighted imaging and MR tumor regression grading had a 90 percent area under the curve (AUC) and a negative predictive value (NPV) of 93 percent.
FDA Expands Clearance of MRI-Guided AI Platform for Deep Brain Stimulation and Lesioning Techniques
September 3rd 2024Utilizing a new machine learning model, the OptimMRI software may improve radiosurgery applications and lesioning techniques such as MRI-guided focused ultrasound through enhanced targeting of the inferolateral part of the ventral intermediate nucleus (VIM).