Seventh measurement can increase six-stroke parameter sensitivity

Article

In recent years, the use of MR perfusion- and diffusion-based imaging to predict tissue outcome following acute ischemic stroke has increased significantly. While most strategies to improve outcome have focused on MRI parameters, researchers from Boston and Finland have devised a novel approach that also includes spatial information.

In recent years, the use of MR perfusion- and diffusion-based imaging to predict tissue outcome following acute ischemic stroke has increased significantly. While most strategies to improve outcome have focused on MRI parameters, researchers from Boston and Finland have devised a novel approach that also includes spatial information.

The whole idea of the perfusion-diffusion mismatch has moved into the clinical mainstream. The approach is well replicated, and the mismatches can be correlated with likelihood of outcome, according to Dr. A. Gregory Sorensen, director of the Massachusetts General Hospital Center for Biomarkers in Imaging and coauthor of a study presented at the International Society for Magnetic Resonance in Medicine meeting in May.

But this model produces six different images, including the apparent diffusion coefficient (ADC), cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT), which makes fast interpretation difficult.

Spatial location is important in determining outcome, but modeling voxel location is a complex function. Researchers circumvented that problem by measuring the relative distance between the diffusion and perfusion abnormalities.

Nina M. Menezes, Ph.D., a radiology researcher at MGH, and colleagues from MGH and Kuopio University Hospital in Finland included in the study 75 patients who had undergone acute MR imaging within 12 hours following the onset of first-ever ischemic stroke and follow-up imaging a minimum of five days later. They created an "MRI-only" risk map constructed from six parameters, including the ADC and T2 maps from diffusion-weighted imaging; CBV, CBF, and MTT from perfusion imaging; and diffusion and perfusion images coregistered to each other and to patients' follow-up T2 images. They then created another risk map by adding a spatial component-the distance from the acute DWI lesion for each voxel-to the MRI-only parameters. Acute DWI readings were obtained using a b-value of 1000. From these, apparent diffusion coefficient and T2 (b = 0) maps were calculated.

The spatial model outperformed the MRI-only model in 68 patients. The MRI-only model resulted in an area under the curve of 0.75, whereas the inclusion of spatial information significantly increased the mean area under the curve to 0.83. With specificity fixed at 70%, sensitivity improved from 68% for the MRI-only model to 79% for the spatial model, a significant difference.

Recent Videos
New Mammography Studies Assess Image-Based AI Risk Models and Breast Arterial Calcification Detection
Can Deep Learning Provide a CT-Less Alternative for Attenuation Compensation with SPECT MPI?
Employing AI in Detecting Subdural Hematomas on Head CTs: An Interview with Jeremy Heit, MD, PhD
Pertinent Insights into the Imaging of Patients with Marfan Syndrome
What New Brain MRI Research Reveals About Cannabis Use and Working Memory Tasks
Current and Emerging Legislative Priorities for Radiology in 2025
How Will the New FDA Guidance Affect AI Software in Radiology?: An Interview with Nina Kottler, MD, Part 2
A Closer Look at the New Appropriate Use Criteria for Brain PET: An Interview with Phillip Kuo, MD, Part 2
How Will the New FDA Guidance Affect AI Software in Radiology?: An Interview with Nina Kottler, MD, Part 1
A Closer Look at the New Appropriate Use Criteria for Brain PET: An Interview with Phillip Kuo, MD, Part 1
Related Content
© 2025 MJH Life Sciences

All rights reserved.