Speech Recognition Brings Breast Imaging Report Errors

Article

Speech recognition software produces eight times as many errors as conventional dictation transcription in breast imaging reports, according to new research published in the October American Journal of Roentgenology.

Speech recognition software produces eight times as many errors as conventional dictation transcription in breast imaging reports, according to new research published in the October American Journal of Roentgenology.

Lead author Sarah Basma of Women’s College Hospital in Toronto, Canada, and colleagues considered 615 breast imaging reports from January 2009 to April 2011. The reports, from two hospitals, were evenly split between those created through automated speech recognition and conventional dictation transcription. They found at least one major error in 23 percent of reports done via speech recognition. With dictation transcription, the rate was 4 percent.

Major errors included word omission, word substitution, nonsense phrases, and punctuation errors, among others.

Errors varied by report type. Breast MRI reports were most prone to them, with 35 percent of speech recognition versions having a major error, 13 percent of interventional procedures, and 15 percent of mammography reports (the dictation equivalents had error rates of 7 percent, 4 percent and 0 percent, respectively).

Seniority and native language had little bearing on error rates, the researchers found.

“We thought that there may be a higher error rate for non-native English speakers because the software works with voice recognition, but that didn’t happen,” said co-author Anabel Scaranelo, MD, of the University Health Network in Toronto.

After adjustment for academic rank, native language, and imaging modality, reports generated with speech recognition were eight times as likely as conventional dictation transcription reports to contain major errors.

Recent Videos
Improving Access to Nuclear Imaging: An Interview with SNMMI President Jean-Luc C. Urbain, MD, PhD
SNMMI: 18F-Piflufolastat PSMA PET/CT Offers High PPV for Local PCa Recurrence Regardless of PSA Level
SNMMI: NIH Researcher Discusses Potential of 18F-Fluciclovine for Multiple Myeloma Detection
SNMMI: What Tau PET Findings May Reveal About Modifiable Factors for Alzheimer’s Disease
Emerging Insights on the Use of FES PET for Women with Lobular Breast Cancer
Can Generative AI Reinvent Radiology Reporting?: An Interview with Samir Abboud, MD
Mammography Study Reveals Over Sixfold Higher Risk of Advanced Cancer Presentation with Symptom-Detected Cancers
Combining Advances in Computed Tomography Angiography with AI to Enhance Preventive Care
Study: MRI-Based AI Enhances Detection of Seminal Vesicle Invasion in Prostate Cancer
What New Research Reveals About the Impact of AI and DBT Screening: An Interview with Manisha Bahl, MD
Related Content
© 2025 MJH Life Sciences

All rights reserved.