X-ray phase contrast imaging provides better soft tissue differentiation and tumor detection.
In a study published in IEEE Transactions on Biomedical Engineering on July 22, investigators from the Shenzhen Institutes of Advanced Technology at the Chinese Academy of Sciences revealed their deep convolutional neural network (CNN) that could improve cancer detection at a lower dose.
Although mammography is the conventionally preferred method for breast cancer screening, its limited image contrast mechanism can reduce the number of cancers it can identify. The technique called X-ray phase contrast imaging (XPCI) does offer better soft tissue differentiation and tumor detection, but the gold and silicon gratings used in it can reduce dose efficiency, meaning patients are exposed to more radiation.
To side-step this problem, a team led by Yongshuai Ge developed a CNN named XP-NET that was used to create a new XPCI signal extraction technique that could augment signal accuracy, leading to improved X-ray dose efficiency.
“We demonstrate that the deep convolutional neural network technique provides a promising approach to improve the grating-based XPCI performance and its dose efficiency in future biomedical applications,” Ge’s team wrote.
XP-NET’s special architecture design automatically performs XPCI signal retrieval and image quality enhancement in a sequence. By doing so, the CNN improved the phase signal accuracy by more than 15 percent compared to a conventional analytical method.
The team tested the CNN with both biological specimens and breast phantom studies, and they found that it was able to acquire phase images with half the dose, and the image quality was comparable to that acquired with the standard dose level.
These findings, the team said, point to the future potential low-dose pre-clinical uses of high quality breast X-ray phase contrast imaging.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
Mammography Study: AI Facilitates Greater Accuracy and Longer Fixation Time on Suspicious Areas
July 8th 2025While noting no differences in sensitivity, specificity or reading time with adjunctive AI for mammography screening, the authors of a new study noted a 4 percent higher AUC and increased fixation time on lesion regions.
Can Contrast-Enhanced Mammography be a Viable Screening Alternative to Breast MRI?
June 17th 2025While the addition of contrast-enhanced mammography (CEM) to digital breast tomosynthesis (DBT) led to over a 13 percent increase in false positive cases, researchers also noted over double the cancer yield per 1,000 women in comparison to DBT alone.
Contrast-Enhanced Mammography and High-Concentration ICM Dosing: What a New Study Reveals
June 16th 2025New research showed a 96 to 97 percent sensitivity for contrast-enhanced mammography (CEM) with an increased iodine delivery rate facilitating robust contrast enhancement for women with aggressive breast cancer.