Developed by radiologist Dr. Taro Takahara and colleagues at Tokai University School of Medicine in Japan, diffusion-weighted whole-body MR imaging with background body signal suppression (DWIBS) paves the way for practical whole-body 3D MR diffusion imaging. A new STIR-EPI sequence, performed with SENSE parallel processing, permits long acquisition times during free breathing to boost contrast resolution and overcome fat saturation problems. Gray scale was reversed, black for white, producing a rotating 3D maximum intensity projection that resembled volumetric displays now frequently generated with FDG-PET. The mechanism for producing DWI contrast in metastatic disease is not clearly understood but is thought to be associated with large cell sizes and high cellular densities that are common in cancerous tissue. Takahara described the approach at the International Society of Magnetic Resonance in Medicine meeting in May.
Developed by radiologist Dr. Taro Takahara and colleagues at Tokai University School of Medicine in Japan, diffusion-weighted whole-body MR imaging with background body signal suppression (DWIBS) paves the way for practical whole-body 3D MR diffusion imaging. A new STIR-EPI sequence, performed with SENSE parallel processing, permits long acquisition times during free breathing to boost contrast resolution and overcome fat saturation problems. Gray scale was reversed, black for white, producing a rotating 3D maximum intensity projection that resembled volumetric displays now frequently generated with FDG-PET. The mechanism for producing DWI contrast in metastatic disease is not clearly understood but is thought to be associated with large cell sizes and high cellular densities that are common in cancerous tissue. Takahara described the approach at the International Society of Magnetic Resonance in Medicine meeting in May.
Breast MRI and Background Parenchymal Enhancement: What a Meta-Analysis Reveals
May 29th 2025Moderate or marked background parenchymal enhancement (BPE) reduces the sensitivity and specificity of MRI for breast cancer detection by more than 10 percent in comparison to scans with minimal or mild BPE, according to a new meta-analysis.
Lunit Unveils Enhanced AI-Powered CXR Software Update
May 28th 2025The Lunit Insight CXR4 update reportedly offers new features such as current-prior comparison of chest X-rays (CXRs), acute bone fracture detection and a 99.5 percent negative predictive value (NPV) for identifying normal CXRs.