A human trial using PET imaging with carbon-11 Pittsburgh compound B suggests a relationship between the amount of brain-based amyloid found with the agent and the rate at which symptoms of dementia with Lewy bodies progress.
A human trial using PET imaging with carbon-11 Pittsburgh compound B suggests a relationship between the amount of brain-based amyloid found with the agent and the rate at which symptoms of dementia with Lewy bodies progress.
Amyloid protein is a suspected cause of Alzheimer's disease, but its influence on the genesis of dementia with Lewy bodies (DLB) is not known. Neurofibrillary tangles, commonly associated with amyloid plaques in the brain of an AD patient, do not appear in DLB cases. Like Alzheimer's, DLB is difficult to diagnose. The diagnostic specificity of a physical exam is about 85%, but sensitivity may be as low as 45%.
Dr. Christopher Rowe, director of nuclear medicine at Austin Hospital in Melbourne, Australia, and colleagues evaluated 29 subjects: seven with DLB, seven with AD, two with mild cognitive impairment (MCI), one with Parkinson's disease, two with frontotemporal dementia, and 10 normal controls.
The researchers, who presented their results at the Society of Nuclear Medicine meeting in June, went beyond their initial intention to simply compare the uptake patterns of C-11 Pittsburgh compound B (PIB). They found evidence indicating a direct relationship between the amount of amyloid deposition and the rate of DLB progression.
C-11 PIB, a PET probe targeted specifically to amyloid protein, measured a large amount of amyloid in the brains of fast-developing fulminant DLB, and less in the brains of slow-developing cases. The latter had a long prodromal phase of mild cognitive symptoms for five or more years before the characteristic clinical features developed. Full-blown symptoms of fulminant DLB develop one to two years after the first physical signs.
In the more advanced AD and DLB cases, low cortical glucose metabolism measured with FDG-PET was present in areas that had high levels of PIB binding. This suggests a relationship between the presence of amyloid protein, directly measured with PIB, and neuronal dysfunction detected with FDG, Rowe said.
Abnormal PIB patterns also appeared in the two subjects with MCI. In both cases, clinical history and neuropsychological tests revealed progressive decline, making it likely that AD will develop, Rowe said. Of three control subjects who had positive PIB-PET tests, one individual subsequently progressed to MCI. Lower C-11 PIB uptake was generally seen in DLB patients than in AD subjects. The single Parkinson's disease patient and the two frontotemporal dementia patients had normal scans.
Can Portable Dual-Energy X-Ray be a Viable Alternative to CT in the ICU?
September 13th 2024The use of a portable dual-energy X-ray detector in the ICU at one community hospital reportedly facilitated a 37.5 percent decrease in chest CT exams in comparison to the previous three months, according to research presented at the American Society of Emergency Radiology (ASER) meeting in Washington, D.C.
New Meta-Analysis Examines MRI Assessment for Treatment of Esophageal Cancer
September 12th 2024Diffusion-weighted MRI provided pooled sensitivity and specificity rates of 82 percent and 81 percent respectively for gauging patient response to concurrent chemoradiotherapy for esophageal cancer, according to new meta-analysis.
Study for Emerging PET/CT Agent Reveals ‘New Standard’ for Detecting Clear Cell Renal Cell Carcinoma
September 11th 2024Results from a multicenter phase 3 trial showed that the PET/CT imaging agent (89Zr)Zr-girentuximab had an 85.5 percent mean sensitivity rate for the diagnosis of clear cell renal cell carcinoma.
Can Radiomics and Autoencoders Enhance Real-Time Ultrasound Detection of Breast Cancer?
September 10th 2024Developed with breast ultrasound data from nearly 1,200 women, a model with mixed radiomic and autoencoder features had a 90 percent AUC for diagnosing breast cancer, according to new research.