Considering how far medical technology has advanced, drug trials are amazingly primitive. The early testing looks at safety-whether an experimental drug makes healthy people sick, how many get sick, and how sick they get. Later testing looks at whether
Considering how far medical technology has advanced, drug trials are amazingly primitive. The early testing looks at safety-whether an experimental drug makes healthy people sick, how many get sick, and how sick they get. Later testing looks at whether diseased people get well, how many, and how much better they get.
When the trials are over, drug developers and their investors must wait, sometimes for months, to see if a statistical improvement was achieved. Aren't we far enough downstream in the development of imaging technology that the lack of a response by patients to an experimental drug could be seen long before that?
It seems reasonable to believe that signs of improvement-a shrinking tumor documented on volumetric CT or metabolic changes indicated by MR spectroscopy or PET-will be apparent in patients who live longer. Given all the talk about a future in which medical treatments are adjusted on the basis of imaging studies that monitor patient response, I find it inconceivable that these imaging technologies are not being widely used in the clinical trials that develop these drugs.
At least one company is promoting this idea. Kendle International provides biopharmaceutical companies with software that quantitates body areas affected by experimental therapies. It is compatible with a variety of imaging technologies.
For the most part, however, Kendle's services and even the capabilities readily available on mainstream imaging equipment are not being utilized widely. They should be. The number of new drugs submitted to the FDA for approval has dropped over the past five years, despite enormous excitement over new prospects and a flood of venture capital. Things have gotten so bad that the FDA is urging pharma to adopt new methods for assessing the clinical effect of experimental drugs. Among them is the use of imaging technologies to serve as tools for evaluating when and how drugs take effect.
The radiology community and pharma should jump on this opportunity to team up to conduct studies that correlate fundamental changes with clinical response to drugs. The research could be done as an adjunct to clinical trials already under way. If correlations emerge, drug companies would have easy and effective means for determining whether to continue developing particular drugs or spending their money on more promising alternatives.
The only way to find out is to try.
Seven Takeaways from Meta-Analysis of PSMA Radiotracers for Prostate Cancer Imaging
December 1st 2023In a newly published meta-analysis of 24 studies, researchers noted that the PSMA PET radiotracer 18F PSMA-1007 may provide more benefit than 68Ga Ga-PSMA-11 for primary staging of patients with prostate cancer and detection of local lesion recurrence, but also has drawbacks with higher liver uptake and multiple reports of false positive bone lesions.
Study: Regular Mammography Screening Reduces Breast Cancer Mortality Risk by More than 70 Percent
November 30th 2023Consistent adherence to the five most recent mammography screenings prior to a breast cancer diagnosis reduced breast cancer death risk by 72 percent in comparison to women who did not have the mammography screening, according to new research findings presented at the annual Radiological Society of North America (RSNA) conference.
FDA Clears Magnetic Resonance Spectroscopy Platform for Non-Invasive Assessment of Brain Chemistry
November 29th 2023BrainSpec Core reportedly offers enhanced sensitivity for low-grade gliomas and may facilitate the diagnosis of conditions including Alzheimer’s disease, multiple sclerosis, and epilepsy.