A 3D whole brain convolutional neural network could provide enhanced sensitivity and specificity for diagnosing intracranial hemorrhages on computed tomography, according to new research presented at the Society for Imaging Informatics in Medicine (SIIM) conference in Kissimmee, Fla.
Radiology researchers from Emory University suggested that the use of a 3D whole brain convolutional neural network (CNN) may not only improve the diagnosis of intracranial hemorrhages, but it could facilitate the classification of subarachnoid hemorrhages (SAHs) on non-contrast computed tomography (CT) as well.
In a new poster abstract presentation at the Society for Imaging Informatics in Medicine (SIIM) conference in Kissimmee, Fla., the study authors said their 3D whole brain CNN demonstrated an area under the curve (AUC) of 0.98, 93 percent sensitivity and 94 percent specificity in detecting intracranial hemorrhages.
Acknowledging previous research that demonstrated the relationship between SAH and aneurysmal rupture location, the study authors were intrigued by the potential ability of a CNN to diagnose intracranial hemorrhages and differentiate between aneurysmal and non-aneurysmal SAHs.
“ … The additional spatial context afforded by a 3D neural network architecture may enable downstream classification of aneurysmal subarachnoid hemorrhages (aSAHs) versus non-aneurysmal subarachnoid hemorrhages (naSAHs),” wrote Ranliang Hu, M.D., the director of stroke imaging and the associate program director of the neuroradiology fellowship in the Division of Neuroradiology at the Emory University School of Medicine, and colleagues.
Accordingly, the researchers trained their 3D whole brain CNN with a combination of an intracranial hemorrhage data set from the Radiological Society of North America (RSNA) and institutional data sets of catheter angiography proven aneurysmal subarachnoid hemorrhages (aSAH) and non-aneurysmal subarachnoid hemorrhages (naSAH).
After refining their CNN model to test for the detection of naSAH and aSAH, Hu and colleagues found an AUC of .95, 89 percent sensitivity and 86 percent specificity for diagnosing naSAH. The CNN model also had an AUC of .83, 77 percent sensitivity and 81 percent specificity for diagnosing aSAH, according to the poster abstract.
Considering Breast- and Lesion-Level Assessments with Mammography AI: What New Research Reveals
June 27th 2025While there was a decline of AUC for mammography AI software from breast-level assessments to lesion-level evaluation, the authors of a new study, involving 1,200 women, found that AI offered over a seven percent higher AUC for lesion-level interpretation in comparison to unassisted expert readers.
SNMMI: Can 18F-Fluciclovine PET/CT Bolster Detection of PCa Recurrence in the Prostate Bed?
June 24th 2025In an ongoing prospective study of patients with biochemical recurrence of PCa and an initial negative PSMA PET/CT, preliminary findings revealed positive 18F-fluciclovine PET/CT scans in over 54 percent of the cohort, according to a recent poster presentation at the SNMMI conference.
Could an Emerging PET Tracer be a Game Changer for Detecting Hepatocellular Carcinoma?
June 23rd 2025In addition to over 90 percent sensitivity in detecting hepatocellular carcinoma (HCC), the glypican-3 (GPC3) targeted PET tracer 68Ga-aGPC3-scFv appeared to be advantageous in identifying HCC tumors smaller than one centimeter, according to pilot study findings presented at the SNMMI conference.