Molecular imaging spoils mystery of listeriosis

Article

With the help of molecular imaging, Stanford University biochemist Jonathan Hardy, Ph.D., has added a new chapter to the mystery of listeriosis, a sometimes fatal bacterial infection linked to unpasteurized cheese.

With the help of molecular imaging, Stanford University biochemist Jonathan Hardy, Ph.D., has added a new chapter to the mystery of listeriosis, a sometimes fatal bacterial infection linked to unpasteurized cheese.

As anyone in France knows, pasteurization ruins the flavor of the 500 varieties of cheese manufactured there. The government accepts as a matter of course that a few French people will die every year after eating cheese infected with Listeria, the bacterial cause of listeriosis. (The USDA requires pasteurization for this reason.)

The Pasteur Institute has studied the bacterium for more than 70 years without definitively identifying which organ serves as its central point of habitation. Using recombinant gene technology, Hardy and colleagues introduced the gene for firefly luciferase into the DNA of the bacterium to allow noninvasive tracking with bioluminescent optical imaging in mice. He reportedly had no trouble persuading the mice to eat the subject of his investigation.

Hardy found that Listeria does its deadly work from the gallbladder, whose toxic bile contents were thought to kill bacteria. He presented the study at the 2005 Society of Molecular Imaging meeting in Cologne, Germany.

Recent Videos
Study: MRI-Based AI Enhances Detection of Seminal Vesicle Invasion in Prostate Cancer
What New Research Reveals About the Impact of AI and DBT Screening: An Interview with Manisha Bahl, MD
Can AI Assessment of Longitudinal MRI Scans Improve Prediction for Pediatric Glioma Recurrence?
A Closer Look at MRI-Guided Adaptive Radiotherapy for Monitoring and Treating Glioblastomas
Incorporating CT Colonography into Radiology Practice
What New Research Reveals About Computed Tomography and Radiation-Induced Cancer Risk
What New Interventional Radiology Research Reveals About Treatment for Breast Cancer Liver Metastases
New Mammography Studies Assess Image-Based AI Risk Models and Breast Arterial Calcification Detection
Can Deep Learning Provide a CT-Less Alternative for Attenuation Compensation with SPECT MPI?
Employing AI in Detecting Subdural Hematomas on Head CTs: An Interview with Jeremy Heit, MD, PhD
Related Content
© 2025 MJH Life Sciences

All rights reserved.