Radiologists can say goodbye to spatial noise on liquid crystal displays with a new technology that performs real-time noise correction on images sent to high-resolution medical monitors.
Radiologists can say goodbye to spatial noise on liquid crystal displays with a new technology that performs real-time noise correction on images sent to high-resolution medical monitors.
One disadvantage of LCDs has been the existence of spatial noise, expressed as measurable stationary differences in the behavior of individual pixels. A medical display with built-in noise compensation at the pixel level addresses this problem (J Digit Imaging 2005; Jul 6 [Epub ahead of print] ).
The display employs a technology called per pixel uniformity, or PPU, that maps the noise behavior of each of the millions of individual pixels in LCDs for a special device installed inside the monitor. This device then performs real-time correction, or precompensation, of all images that are sent to the display.
"This real-time system removes all display noise transparently to the user," said Tom Kimpe, president of Barco Imaging. "If one knows exactly the noise pattern that will be superimposed to the medical image, then it becomes possible to change - or precompensate - the image so that the noise pattern is canceled."
PPU technology has evolved as LCDs rapidly replace CRT monitors for medical imaging. Some aspects of LCD technology have raised questions regarding its usefulness for subtle clinical diagnosis such as mammography.
The millions of individual pixels used in active matrix medical LCDs all behave differently. Each pixel is a separate element with its own characteristics, which depend on factors such as local thickness of the glass and the tolerance of the transistor driving that specific pixel, Kimpe said.
"Even if all pixels were driven with exactly the same pixel data, there would still be a measurable difference in luminance between individual pixels," he said.
Kimpe said PPU also increases DICOM conformance over the entire surface of the display.
Without individual compensation, most pixels would be outside the tolerance recommended by the American Association of Physicists in Medicine and the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services.
PPU increases uniformity and decreases spatial noise to a level superior to noncompensated LCDs and even better than CRT devices built for mammography, according to Kimpe.
"Especially for subtle mammography diagnosis, PPU could be an important step forward. Noise compensation almost completely removes all systematic static noise patterns from the display, thereby reducing the risk of false positives and increasing the probability of detection of true structures in the image," he said.
Can Photon-Counting CT be an Alternative to MRI for Assessing Liver Fat Fraction?
March 21st 2025Photon-counting CT fat fraction evaluation offered a maximum sensitivity of 81 percent for detecting steatosis and had a 91 percent ICC agreement with MRI proton density fat fraction assessment, according to new prospective research.
The Reading Room Podcast: Current Perspectives on the Updated Appropriate Use Criteria for Brain PET
March 18th 2025In a new podcast, Satoshi Minoshima, M.D., Ph.D., and James Williams, Ph.D., share their insights on the recently updated appropriate use criteria for amyloid PET and tau PET in patients with mild cognitive impairment.
Strategies to Reduce Disparities in Interventional Radiology Care
March 19th 2025In order to help address the geographic, racial, and socioeconomic barriers that limit patient access to interventional radiology (IR) care, these authors recommend a variety of measures ranging from increased patient and physician awareness of IR to mobile IR clinics and improved understanding of social determinants of health.
AI-Initiated Recalls After Screening Mammography Demonstrate Higher PPV for Breast Cancer
March 18th 2025While recalls initiated by one of two reviewing radiologists after screening mammography were nearly 10 percent higher than recalls initiated by an AI software, the AI-initiated recalls had an 85 percent higher positive predictive value for breast cancer, according to a new study.