Teleradiology relieves clinical trial image bottleneck

Article

Adoption of teleradiology solutions is inhibited by several factors: patient data privacy, state licensing laws, and the comfort level of users. One area where teleradiology technologies may become an attractive solution is the clinical trial

Adoption of teleradiology solutions is inhibited by several factors: patient data privacy, state licensing laws, and the comfort level of users.

One area where teleradiology technologies may become an attractive solution is the clinical trial incorporating radiological measurements, which is not subject to the same obstacles as general clinical settings. In a trial under way at the University of California, San Francisco, teleradiology is being investigated as a potential solution to problems involving image data management workflow in clinical trials.

Using the Internet and a lossless wavelet compression scheme, the application running on the reader's workstation acquires data directly from the PACS and displays it on the reader's workstation. Access to the teleradiology system is provided via a secure Web site.

"The system is being evaluated in clinical trial applications that require management of large medical images, each several megabytes in size," said Vivek Swarnakar, Ph.D., computing director in the UCSF Osteoporosis and Arthritis Research Group. "Teleradiology enables us to store the images centrally and then deploy the application (the client) to radiologists via our intranet. They then read the images without the need to install an application on their computer."

The principal advantage to radiology is that physicians have access to secure data from anywhere using a dial-up connection, Swarnakar said. The streaming technology provides a means to handle images, without losing any of the information, thus satisfying regulatory requirements.

Wireless teleradiology networks are also possible. Swarnakar has demonstrated the system using a laptop connected to the Internet via a Ricochet 28.8 Wireless modem to run the client, opening up possibilities for mobile applications as well.

Prior to the teleradiology system, images were acquired in clinical trials and films were shipped via courier to relevant parties. Under that protocol, it was not uncommon to duplicate the data at several locations, introducing inefficiencies and potential for error that could be difficult to track and expensive to fix.

Newsletter

Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.

Recent Videos
SNMMI: Emerging PET Insights on Neuroinflammation with Progressive Apraxia of Speech (PAOS) and Parkinson-Plus Syndrome
Improving Access to Nuclear Imaging: An Interview with SNMMI President Jean-Luc C. Urbain, MD, PhD
SNMMI: 18F-Piflufolastat PSMA PET/CT Offers High PPV for Local PCa Recurrence Regardless of PSA Level
SNMMI: NIH Researcher Discusses Potential of 18F-Fluciclovine for Multiple Myeloma Detection
SNMMI: What Tau PET Findings May Reveal About Modifiable Factors for Alzheimer’s Disease
Emerging Insights on the Use of FES PET for Women with Lobular Breast Cancer
Can Generative AI Reinvent Radiology Reporting?: An Interview with Samir Abboud, MD
Mammography Study Reveals Over Sixfold Higher Risk of Advanced Cancer Presentation with Symptom-Detected Cancers
Combining Advances in Computed Tomography Angiography with AI to Enhance Preventive Care
Study: MRI-Based AI Enhances Detection of Seminal Vesicle Invasion in Prostate Cancer
Related Content
© 2025 MJH Life Sciences

All rights reserved.