Utilizing AI for Quantitative Assessment of Prostate Cancer Recurrence

News
Video

In a video interview, Hong Song, M.D., Ph.D., discussed retrospective research, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, that evaluated the combination of artificial intelligence (AI)-based software and the PSMA agent piflufolastat F 18 to help quantify prostate cancer lesions and associations with biochemical progression-free survival.

Manual assessments of prostate specific membrane antigen (PSMA) scoring and measures such as standardized uptake value (SUV) mean and maximum SUV (SUVmax) on positron emission tomography (PET) scans can be tedious and are not always accurate, noted Hong Song, M.D., Ph.D., in a recent interview.

With this in mind, Dr. Song and colleagues recently evaluated the combination of aPROMISE software (PYLARIFY AI, Exini Diagnostics AB/Lantheus Holdings), an FDA-cleared deep learning platform for quantitative assessment of PSMA PET/CT images, and piflufostat F 18 (PYLARIFY®, Lantheus Holdings) to assess 69 patients with prostate cancer recurrence and the impact of quantitative measures upon subsequent biochemical progression-free survival.

In some of the findings from the study, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, the researchers noted that higher PSMA-avid total tumor volume (PSMAAttv) and a higher aPSMA score for bone metastases were both associated with shorter biochemical progression-free survival in patients with prostate cancer.

(Editor’s note: For related content, see “Recurrent Prostate Cancer and Low PSA Levels: Can an Emerging PSMA PET Agent Have an Impact?,” “Emerging PET Radiotracer May Offer Multiple Advantages in Detecting Prostate Cancer” and “Can Pre-Op MRI Staging Help Predict Prostate Cancer Recurrence After a Prostatectomy?”)

“There are quantitative tools now that are readily available to help us have this prognostic evaluation of (patients) who may be at high risk for subsequent progression (of prostate cancer and) should be followed more closely. … There is more information than meets the eye in the scan that we can now quantify and extract,” emphasized Dr. Song, an assistant professor of radiology (nuclear medicine) at Stanford University.

For more insights from Dr. Song, watch the video below.

Newsletter

Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.

Recent Videos
SNMMI: Emerging PET Insights on Neuroinflammation with Progressive Apraxia of Speech (PAOS) and Parkinson-Plus Syndrome
Improving Access to Nuclear Imaging: An Interview with SNMMI President Jean-Luc C. Urbain, MD, PhD
SNMMI: 18F-Piflufolastat PSMA PET/CT Offers High PPV for Local PCa Recurrence Regardless of PSA Level
SNMMI: NIH Researcher Discusses Potential of 18F-Fluciclovine for Multiple Myeloma Detection
SNMMI: What Tau PET Findings May Reveal About Modifiable Factors for Alzheimer’s Disease
Study: MRI-Based AI Enhances Detection of Seminal Vesicle Invasion in Prostate Cancer
What New Research Reveals About the Impact of AI and DBT Screening: An Interview with Manisha Bahl, MD
What New Interventional Radiology Research Reveals About Treatment for Breast Cancer Liver Metastases
New Mammography Studies Assess Image-Based AI Risk Models and Breast Arterial Calcification Detection
Employing AI in Detecting Subdural Hematomas on Head CTs: An Interview with Jeremy Heit, MD, PhD
Related Content
© 2025 MJH Life Sciences

All rights reserved.