Deep learning models trained on a dataset lacking racial diversity could hinder the detection of pathology in underrepresented minority patients.
A study presented at the Radiological Society of North America (RSNA) 2021 Annual Meeting demonstrates the importance of using racially diverse datasets while training artificial intelligence (AI) systems to ensure fair outcomes.
“As the rapid development of deep learning in medicine continues, there are concerns of potential bias when interpreting radiological images,” the authors wrote. “As future medical AI systems are approved by regulators, it is crucial that model performance on different racial/ethnic groups is shared to ensure that safe and fair systems are being implemented.”
The findings were presented by Brandon Price, a medical student at Florida State University College of Medicine in Tallahassee.
Many studies have shown that deep learning systems are subjective in their interpretation of data. Bias is often accidentally introduced into the training data, or a racial or ethnic group is under sampled causing susceptible models to develop bias. In this study, the researchers investigated how a deep learning model trained on a dataset lacking racial diversity could impede the detection of pathology in underrepresented minority patients.
The researchers used a dataset with over 300,000 chest X-ray images and 14 labeled findings. A low sample size of other races/ethnicities meant that only images of Black and White patients were included. One training dataset included only White patients and the other training dataset comprised 26% Black and 74% White patients. An equal distribution of labeled findings was shared between the datasets and a DenseNet model was trained on each dataset 25 times. The receiver operating characteristics (ROC) area under the curve (AUC) and sensitivity, with a specificity threshold of 0.75, were compared for each of the 14 labeled findings.
Compared with a model trained on only White patients, the model trained with a diverse dataset had a significantly better ROC-AUC performance at identifying six of the 14 labeled findings in a test dataset of only Black patients (P <0.05). Additionally, compared with a model trained on only White patients, the model trained with a diverse dataset found a significant increase in sensitivity performance for six of the 14 labeled findings on a test dataset of only Black patients (P <0.05).
“As more AI systems are developed, it is imperative that they are fair and perform equally well with groups that have been historically underserved,” the authors wrote.
For more coverage of RSNA 2021, click here.
Can Abbreviated Breast MRI Have an Impact in Assessing Post-Neoadjuvant Chemotherapy Response?
April 24th 2025New research presented at the Society for Breast Imaging (SBI) conference suggests that abbreviated MRI is comparable to full MRI in assessing pathologic complete response to neoadjuvant chemotherapy for breast cancer.
Clarius Mobile Health Unveils Anterior Knee Feature for Handheld Ultrasound
April 23rd 2025The T-Mode Anterior Knee feature reportedly offers a combination of automated segmentation and real-time conversion of grayscale ultrasound images into color-coded visuals that bolster understanding for novice ultrasound users.
What is the Best Use of AI in CT Lung Cancer Screening?
April 18th 2025In comparison to radiologist assessment, the use of AI to pre-screen patients with low-dose CT lung cancer screening provided a 12 percent reduction in mean interpretation time with a slight increase in specificity and a slight decrease in the recall rate, according to new research.