X-ray matter interactions in the diagnostic imaging energy range are dominated by photoelectric and Compton effects. Both interactions increase in proportion to electron density, which is proportional to physical density. In conventional CT imaging at 120 kVp to 140 kVp, the Compton effect predominates, and hence image quality is primarily governed by physical density.
X-ray matter interactions in the diagnostic imaging energy range are dominated by photoelectric and Compton effects. Both interactions increase in proportion to electron density, which is proportional to physical density. In conventional CT imaging at 120 kVp to 140 kVp, the Compton effect predominates, and hence image quality is primarily governed by physical density.
At lower kilovoltages, the frequency of Compton interactions remains relatively constant, whereas the frequency of photoelectric interactions increases exponentially. While the frequency of photoelectric interactions is strongly dependent on the atomic number Z (approximately proportional to Z3) the Compton effect is independent of the atomic number. For certain substances, the presence of elemental k-edges will further increase the frequency of photoelectric interactions at energies at, or just above, the k-edge (e.g., Iodine at 33keV).
Ultimately, attenuation displayed within a CT voxel is determined by the sum of different x-ray matter interactions, dominated by photoelectric and Compton interactions. Therefore, different substances will demonstrate different CT Hounsfield unit values at different energies. If the substances imaged have sufficiently distinct atomic numbers, it should, in principle, be possible to differentiate these substances based on their known attenuation properties at two different energies.
GE HealthCare Debuts AI-Powered Cardiac CT Device at ACC Conference
April 1st 2025Featuring enhanced low-dose image quality with motion-free images, the Revolution Vibe CT system reportedly facilitates improved diagnostic clarity for patients with conditions ranging from in-stent restenosis to atrial fibrillation.
The Reading Room Podcast: Current Perspectives on the Updated Appropriate Use Criteria for Brain PET
March 18th 2025In a new podcast, Satoshi Minoshima, M.D., Ph.D., and James Williams, Ph.D., share their insights on the recently updated appropriate use criteria for amyloid PET and tau PET in patients with mild cognitive impairment.