In addition to offering a 98.5 percent sensitivity rate in diagnosing fractures on X-ray, an emerging artificial intelligence (AI) software reportedly helped reduce mean turnaround time on X-ray fracture diagnosis from 48 hours to 8.3 hours, according to new research presented at the Radiological Society of North America (RSNA) conference.
Adding artificial intelligence (AI) software to radiology workflows for X-ray fracture detection may lead to a sixfold reduction in turnaround time from image acquisition to the final radiology report, according to findings from a recent multicenter study.
For the retrospective study, which was presented at the Radiological Society of North America (RSNA) conference, researchers assessed the AI software Rayvolve (AZmed) in enabling triage of X-rays with positive findings for fracture. The study involved X-ray data from a total of 1,442 patients drawn from 14 SimonMed Imaging outpatient centers. The FDA-cleared software reportedly provides notification of priority cases for review three times a day, according to the study.
In a six-month comparison of 159,601 X-ray exams performed without AI in 2022 to 170,703 X-ray exams performed with AI in 2023, the study authors found that adjunctive AI led to an 8.3-hour turnaround time for final radiology report results in comparison to a 48-hour turnaround time without the use of AI.
“A patient diagnosed with a fracture receives results 6 times faster with the AI,” noted Sean D. Raj, M.D., the lead author of the study and chief innovation officer at SimonMed Imaging.
In addition to facilitating a greater than 40-hour difference in turnaround times for high-priority fracture X-rays (7.2 hours vs. 47.7 hours), the AI software demonstrated a 98.5 percent sensitivity rate, an 88.2 percent specificity rate and a 98.8 percent negative predictive value (NPV) for fracture detection, according to the study authors. (Image courtesy of RSNA.)
(Editor’s note: For related content, see “Gleamer’s BoneView Gains FDA Clearance for AI-Powered Pediatric Fracture Detection,” “Study: AI Enhances Abnormality Detection on CXR Across Radiologist Experience Levels” and “Can AI Improve Triage Efficiency in Radiology Workflows for Follow-Up X-Rays?”)
In addition to facilitating a greater than 40-hour difference in turnaround times for high-priority fracture X-rays (7.2 hours vs. 47.7 hours), the AI software demonstrated a 98.5 percent sensitivity rate, an 88.2 percent specificity rate and a 98.8 percent negative predictive value (NPV) for fracture detection, according to the study authors.
Specifically, for 109 hip fractures, the AI software offered a 97.1 sensitivity rate, an 86.7 percent specificity rate and a 98.5 percent NPV, according to the study. For 82 shoulder fractures, the researchers noted 100 percent sensitivity and NPV rates as well as 79.2 percent specificity rate.
Reference
1. Raj SD, Sadegi B, Simon J. Radiologist worklist reprioritization utilizing artificial intelligence: measuring turnaround time for fracture detection on MSK X-rays sourced from a nationwide outpatient imaging practice. Presented at the RSNA 2023 109th Scientific Assembly and Annual Meeting Nov. 26-30, 2023. Available at https://www.rsna.org/annual-meeting . Accessed December 18, 2023.
Can Abbreviated Breast MRI Have an Impact in Assessing Post-Neoadjuvant Chemotherapy Response?
April 24th 2025New research presented at the Society for Breast Imaging (SBI) conference suggests that abbreviated MRI is comparable to full MRI in assessing pathologic complete response to neoadjuvant chemotherapy for breast cancer.
Clarius Mobile Health Unveils Anterior Knee Feature for Handheld Ultrasound
April 23rd 2025The T-Mode Anterior Knee feature reportedly offers a combination of automated segmentation and real-time conversion of grayscale ultrasound images into color-coded visuals that bolster understanding for novice ultrasound users.
What is the Best Use of AI in CT Lung Cancer Screening?
April 18th 2025In comparison to radiologist assessment, the use of AI to pre-screen patients with low-dose CT lung cancer screening provided a 12 percent reduction in mean interpretation time with a slight increase in specificity and a slight decrease in the recall rate, according to new research.