In a recent video interview, Susan Holley, MD discussed key findings from a large retrospective longitudinal study, presented at the recent Radiological Society of North America (RSNA) conference, which found that an emerging artificial intelligence (AI) model was over 24 percent more consistent than radiologist assessment of breast density.
Artificial intelligence (AI) could play a key role in improving the consistency of breast density assessment, according to new research presented at the recent Radiological Society of North America (RSNA) conference.
In a retrospective, longitudinal study that examined the effectiveness of an emerging artificial intelligence (AI) model (WRDensity, Whiterabbit.ai ) for assessing breast density, researchers reviewed mammography data from over 61,000 patients who had three or more mammograms over a five-year period. They found the AI model was over 24 percent more consistent than radiologist assessment in assessing breast density via the Breast Imaging Reporting and Data System (BI-RADS).
In a recent video interview, Susan Holley, MD, a co-author of the study who presented the findings at the RSNA conference, said the AI model can help address the “innate variability” that can occur with radiologist assessment of breast density. As Dr. Holley pointed out, adjunctive AI assessment could be beneficial in risk stratification, determining the potential need for supplemental screening and documenting breast density assessment in radiology reports.
“With breast density being so important for risk assessment, supplemental screening and also now with a national breast density notification law that is looking like it’s going to actually happen in 2023, looking at variability and how we can get better at density assessment is even more timely and more critical,” noted Dr. Holley, a radiologist who is affiliated with UNC Health Care in Raleigh, N.C.
For more insights from Dr. Holley, watch the video below.
Can AI Improve Detection of Extraprostatic Extension on MRI?
December 4th 2023Utilizing a deep learning-based AI algorithm to differentiate between diagnostic and non-diagnostic quality of prostate MRI facilitated a 10 percent higher specificity rate for diagnosing extraprostatic extension on multiparametric MRI, according to research presented at the recent RSNA conference.
Study: Regular Mammography Screening Reduces Breast Cancer Mortality Risk by More than 70 Percent
November 30th 2023Consistent adherence to the five most recent mammography screenings prior to a breast cancer diagnosis reduced breast cancer death risk by 72 percent in comparison to women who did not have the mammography screening, according to new research findings presented at the annual Radiological Society of North America (RSNA) conference.
Chest CT Study Shows Higher Emphysema Risk from Combination of Marijuana and Cigarette Smoking
November 28th 2023People who smoke marijuana and cigarettes have 12 times the risk for centrilobular emphysema than non-smokers, according to new computed tomography (CT) research presented at the annual Radiological Society of North America (RSNA) conference.