In a retrospective study involving mammography screening in over 114,000 women, researchers found that an artificial intelligence model had comparable specificity and sensitivity to radiologist screenings, reduced false positive results by 25 percent and reduced radiologist workload by more than 62 percent.
Emerging research suggests that artificial intelligence (AI) could have a significant role in breast cancer screening.
In a new retrospective study published in Radiology, researchers compared AI assessment of mammograms to radiologist assessment with no AI involvement in a study population of over 114,000 women. Not only did the study authors find comparable specificity (98.6 percent with AI, 98.1 percent without AI) and sensitivity (69.7 percent with AI, 70.8 percent without AI), they noted a 25 percent reduction in false positives with AI assessment.
Utilizing initial AI-only screening also would have prevented radiologists from reading 71,585 of the 114, 421 mammograms due to the exclusion of normal or suspicious findings, reducing the radiologist workload by over 62 percent, according to the study authors.
“ … (The) incorporation of an artificial intelligence (AI) system in population-based breast cancer screening programs could potentially improve screening outcomes and may considerably reduce the workload of radiologists,” wrote Martin Lillholm, Ph.D, a professor in the Department of Computer Science at the University of Copenhagen in Denmark, and colleagues.
In the main simulation study of AI-based screening, the researchers utilized the AI system Transpara (ScreenPoint Medical), which has received 501(k) clearance from the Food and Drug Administration (FDA) as well as the Conformite Europeenne (CE) mark of approval, to assess whether mammogram findings were normal, of moderate risk or suspicious.
In regard to assessing breast density with the Breast Imaging Reporting and Data System (BI-RADS), Lillholm and colleagues noted the AI screening had reduced sensitivity with increasing BI-RADS density in comparison to radiologist assessment and increased specificity across all BI-RADS densities. The study authors also noted that smaller sample sizes precluded establishment of noninferiority for the AI system regarding individual BI-RADS density groups.
Other limitations of the study, according to Lillholm and colleagues, included a potentially higher likelihood of radiologists diagnosing cancer in a subgroup of the main study population (after initial AI screening) as opposed to standard screening, They also noted that the data came from a single center assessing one AI modality, which may preclude the extrapolation of results to other institutions with different screening regimens and/or AI systems.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
Reducing the Interval Breast Cancer Rate of Screening DBT: Can AI Have an Impact?
July 29th 2025In a retrospective review of screening digital breast tomosynthesis (DBT) exams for over 200 women with interval breast cancers, researchers found that AI provided accurate localization of cancers in 32.6 percent of the cases.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.
Mammography Study: AI Facilitates Greater Accuracy and Longer Fixation Time on Suspicious Areas
July 8th 2025While noting no differences in sensitivity, specificity or reading time with adjunctive AI for mammography screening, the authors of a new study noted a 4 percent higher AUC and increased fixation time on lesion regions.