A new technique combining electrocardiographs (ECG) and computed tomography (CT) paints a more accurate picture of the electrical activity of a beating heart, according to a new study. The technique, which its inventors call electrocardiographic imaging, or ECGI, can pinpoint the precise origins of abnormal heart rhythms and could improve diagnosis and treatment of this fatal condition.
A new technique combining electrocardiographs (ECG) and computed tomography (CT) paints a more accurate picture of the electrical activity of a beating heart, according to a new study in Science Translational Medicine. The technique, which its inventors call electrocardiographic imaging, or ECGI, can pinpoint the precise origins of abnormal heart rhythms and could improve diagnosis and treatment of this fatal condition, University of Washington in St. Louis researchers reported.
More than 7 million people worldwide die annually from abnormal heart rhythms or cardiac arrhythmias, and many more are disabled. Yet there has been no imaging technique available to identify patients at risk, provide accurate diagnosis, or guide therapy. The electrocardiogram, a decades-old tool for measuring the electrical activity of the heart, captures only an approximate, distorted view of a beating heart.
Combining ECG recorded using multi-electrode vests with torso CT scans, Yong Wang, PhD, and colleagues pinpointed the origins of abnormal heartbeats in 25 patients. The authors combined the inputs to understand the electrical behavior of arrhythmic hearts, creating a detailed map of electrical activation and tracing the origin of the abnormal heart rhythm.
The team correctly identified the origin of rhythms in more than 90 percent of patients, they reported. Wang and colleagues confirmed these results with the standard catheter-based electrophysiology study.
The results show that an ECGI can give doctors information comparable to the current procedure for mapping abnormal heart activity without the need for intravenous needles or anesthetics. Moreover, the ECG/CT approach enables the mapping of single heartbeats and give high-resolution images of the heart’s ventricles, an improvement over the simplified shadow that standard techniques provide.
Stay at the forefront of radiology with the Diagnostic Imaging newsletter, delivering the latest news, clinical insights, and imaging advancements for today’s radiologists.
The Reading Room Podcast: A Closer Look at Remote MRI Safety, Part 2
July 25th 2025In the second of a multi-part podcast episode, Emanuel Kanal, M.D. and Tobias Gilk, MRSO, MRSE, share their perspectives on remote MRI safety protocols for ensuring screening accuracy and adherence to conditional implant guidelines as well as a rapid and effective response to adverse events.
The Reading Room Podcast: Current and Emerging Insights on Abbreviated Breast MRI, Part 2
July 23rd 2025In the second part of a multi-part podcast episode, Stamatia Destounis, MD, Emily Conant, MD and Habib Rahbar, MD, discuss key sequences for abbreviated breast MRI and how it stacks up to other breast cancer screening modalities.