Image quality may be affected if reduced doses in 18F-FDG-PET/MRI are used for abdominal examinations.
Reducing doses in 18F-FDG-PET/MRI of the abdomen may affect image quality, according to a study published in the Journal of Nuclear Medicine. Researchers from Germany evaluated the effect of stepwise reduced doses on objective and subjective image parameters and on oncologic readings in whole-body 18F-FDG-PET/MRI. The researchers retrospectively simulated the stepwise reduction of 18F-FDG doses of 19 patients, mean age of 50.9 years with a body mass index (BMI), who received a whole-body PET/MRI examination, from 3 to 0.5 MBq/kgBW in intervals of 0.25. Objective imaging parameters were assessed by measuring the standardized uptake value (SUV) and coefficient of variation (CV) in different regions: • Aorta • Liver• Spleen• Kidney• Small bowel• Lumbar vertebra• Psoas muscle• Urinary bladder They also evaluated the noise equivalent count rates (NECR) in each bed position. Subjective image quality was evaluated with a blinded reading of each simulated PET compared to the dose of 2 MBq/kgBW. Oncologic reading was performed first, according to PET response criteria in solid tumors (PERCIST) in each dose, and second by defining malignant lesions in doses of 2 MBq/kgBW and the maximum dose image (gold standard). Ninety lesions were found using the standard maximum dose of 3 MBq/kgBW. Eighty-six lesions (95 percent) of these lesions were correctly identified with the lower FDG dose; there were no false-negative or false-positive results. With decreasing doses, regions in the mid-abdomen showed a stronger decrease of SUVmean and NECR than regions in the upper abdomen. SUVmean was -45 percent on average in the small bowel and -15 percent on average in the liver. CV showed a non-linear increase, pronounced below 1.5 MBq/kgBW. Subjective image quality was stable over a range between 1.25 and 2.75 MBq/kgBW compared to 2 MBq/kgBW. However, large photopenic areas in the mid abdomen were observed in two patients. In the PERCIST reading, target lesions were above the liver threshold with a stable SUVpeak in all cases down to 2 MBq/kgBW. The researchers concluded a reduction of doses in 18F-FDG-PET/MRI might be possible down to 2 MBq/kgBW in oncologic whole-body examinations, but the image quality in the mid-abdomen may be more affected by lower doses than in the upper abdomen and in single cases, large photopenic areas can occur. “Therefore, we do not recommend reducing doses below 3 MBq/kgBW in adults at this time,” they wrote.
Comparative AI Study Shows Merits of RapidAI LVO Software in Stroke Detection
February 6th 2025The Rapid LVO AI software detected 33 percent more cases of large vessel occlusion (LVO) on computed tomography angiography (CTA) than Viz LVO AI software, according to a new comparative study presented at the International Stroke Conference (ISC).
Computed Tomography Study Assesses Model for Predicting Recurrence of Non-Small Cell Lung Cancer
January 31st 2025A predictive model for non-small cell lung cancer (NSCLC) recurrence, based on clinical parameters and CT findings, demonstrated an 85.2 percent AUC and 83.3 percent sensitivity rate, according to external validation testing in a new study.
Can MRI-Based Deep Learning Improve Risk Stratification in PI-RADS 3 Cases?
January 30th 2025In external validation testing, a deep learning model demonstrated an average AUC of 87.6 percent for detecting clinically significant prostate cancer (csPCA) on prostate MRI for patients with PI-RADS 3 assessments.